Valuation of forward start options under affine jump-diffusion models

被引:4
|
作者
Vidal Nunes, Joao Pedro [1 ]
Viegas Alcaria, Tiago Ramalho [2 ]
机构
[1] BRU UNIDE, ISCTE IUL Business Sch, Edificio 2,Gabinete D531, P-1600189 Lisbon, Portugal
[2] ISCTE IUL Business Sch, Lisbon, Portugal
关键词
C63; G13; Forward start options; Jump-diffusion processes; COS approximation; Gaussian quadratures; Stochastic volatility and interest rates; Discrete Fourier transform; STOCHASTIC VOLATILITY MODELS; INTEREST-RATES; SIMULATION; INVERSION;
D O I
10.1080/14697688.2015.1049200
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Under the general affine jump-diffusion framework of Duffie et al. [Econometrica, 2000, 68, 1343-1376], this paper proposes an alternative pricing methodology for European-style forward start options that does not require any parallel optimization routine to ensure square integrability. Therefore, the proposed methodology is shown to possess a better accuracy-efficiency trade-off than the usual and more general approach initiated by Hong [Forward Smile and Derivative Pricing. Working paper, UBS, 2004] that is based on the knowledge of the forward characteristic function. Explicit pricing solutions are also offered under the nested jump-diffusion setting proposed by Bakshi et al. [J. Finance, 1997, 52, 2003-2049], which accommodates stochastic volatility and stochastic interest rates, and different integration schemes are numerically tested.
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条
  • [1] Pricing Forward Starting Options in Double Exponential Jump-diffusion Models
    Yang, Jianqi
    Zhao, Shoujuan
    [J]. 2011 INTERNATIONAL CONFERENCE ON ECONOMIC, EDUCATION AND MANAGEMENT (ICEEM2011), VOL II, 2011, : 240 - 243
  • [2] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [3] Approximate basket options valuation for a jump-diffusion model
    Xu, Guoping
    Zheng, Harry
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (02): : 188 - 194
  • [4] Analytical valuation of American options on jump-diffusion processes
    Gukhal, CR
    [J]. MATHEMATICAL FINANCE, 2001, 11 (01) : 97 - 115
  • [5] Analytical Valuation of Asian Options with Continuously Paying Dividends in Jump-Diffusion Models
    Lin, Hsien-Jen
    [J]. JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2013, 16 (02): : 197 - 204
  • [6] IMEX schemes for pricing options under jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    [J]. APPLIED NUMERICAL MATHEMATICS, 2014, 84 : 33 - 45
  • [7] Equilibrium valuation of currency options under a jump-diffusion model with stochastic volatility
    Xing, Yu
    Yang, Xiaoping
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 231 - 247
  • [8] Saddlepoint approximations for affine jump-diffusion models
    Glasserman, Paul
    Kim, Kyoung-Kuk
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2009, 33 (01): : 15 - 36
  • [9] Pricing Cliquet options in jump-diffusion models
    Yan, HF
    Yang, JQ
    Liu, LM
    [J]. STOCHASTIC MODELS, 2005, 21 (04) : 875 - 884
  • [10] Valuation of Insurance Products with Shout Options in a Jump-Diffusion Model
    Liu, Jun
    Liang, Zhian
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021