Point-pattern analysis on the sphere

被引:15
|
作者
Robeson, Scott M. [1 ,2 ]
Li, Ao [3 ]
Huang, Chunfeng [3 ]
机构
[1] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA
[2] Indiana Univ, Dept Stat, Bloomington, IN 47405 USA
[3] Indiana Univ, Dept Stat, Bloomington, IN 47408 USA
基金
美国国家科学基金会;
关键词
K-function; Spatial analysis; Global sampling networks; Spherical grids; Global change; INTERPOLATION;
D O I
10.1016/j.spasta.2014.10.001
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Many important environmental, geographic, and geophysical variables are observed at the global scale, so it is important to extend point-pattern methods to the sphere. Here, we develop the K function on the sphere and then evaluate several global data structures and networks. The assumption of complete spatial randomness (CSR) gives a K function that is proportional to the square of distance in Euclidean space, but we find that CSR on the sphere is proportional to 1-cos(angular distance). To evaluate the spherical K function, we analyze two global data structures: latitude-longitude and equidistant hexagonal grids. Due to over-representation of polar regions, latitude-longitude grids produce clustered point patterns. The hexagonal grid is equal-area on the sphere and produces a dispersed point pattern. We also analyze the structure of an observing system for global climate research that is intended to have relatively even spatial coverage. We find that, due to its coastal and continental biases, the climate-station network produces clustered point patterns over a range of distances. Our focus is on planetaryscale geographic point distributions, but we foresee applications of spherical K functions in disciplines such as astronomy, geodetics, anatomy, and neuroscience. Software for spherical point-pattern analysis is available from the authors. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 50 条
  • [41] Spatial point pattern analysis and industry concentration
    Reinhold Kosfeld
    Hans-Friedrich Eckey
    Jørgen Lauridsen
    [J]. The Annals of Regional Science, 2011, 47 : 311 - 328
  • [42] ANALYSIS OF A 3-DIMENSIONAL POINT PATTERN
    BADDELEY, AJ
    [J]. ACTA STEREOLOGICA, VOL 6, SUPP 3, PARTS 1-2, 1987, 6 : 779 - 779
  • [43] The Use of Point Pattern Statistics in Urban Analysis
    Pissourios, Ioannis
    Lafazani, Pery
    Spyrellis, Stavros
    Christo-Doulou, Anastasia
    Myridis, Myron
    [J]. BRIDGING THE GEOGRAPHIC INFORMATION SCIENCES, 2012, : 347 - 364
  • [44] Point pattern analysis of regional city distributions
    Reza Pourtaheri
    Mohammad Q. Vahidi-Asl
    [J]. Quality & Quantity, 2011, 45
  • [45] Point pattern analysis of regional city distributions
    Pourtaheri, Reza
    Vahidi-Asl, Mohammad Q.
    [J]. QUALITY & QUANTITY, 2011, 45 (06) : 1473 - 1481
  • [46] Spatial point pattern analysis and industry concentration
    Kosfeld, Reinhold
    Eckey, Hans-Friedrich
    Lauridsen, Jorgen
    [J]. ANNALS OF REGIONAL SCIENCE, 2011, 47 (02): : 311 - 328
  • [47] Rainbow pattern analysis of a multilayered sphere for optical diagnostic of a heating droplet
    Zhou, Jianxi
    Fang, Yuan
    Wang, Jiajie
    Zhu, Le
    Wriedt, Thomas
    [J]. OPTICS COMMUNICATIONS, 2019, 441 : 113 - 120
  • [48] ON POINT VORTICES ON ROTATING SPHERE
    KLYATSKIN, KV
    REZNIK, GM
    [J]. OKEANOLOGIYA, 1989, 29 (01): : 21 - 27
  • [49] POINT SOURCE IN A FINITE SPHERE
    SIEWERT, CE
    MAIORINO, JR
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1979, 22 (05): : 435 - 439
  • [50] Point vortices on hyperbolic sphere
    Hwang, Seungsu
    Kim, Sun-Chul
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (04) : 475 - 488