Point-pattern analysis on the sphere

被引:15
|
作者
Robeson, Scott M. [1 ,2 ]
Li, Ao [3 ]
Huang, Chunfeng [3 ]
机构
[1] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA
[2] Indiana Univ, Dept Stat, Bloomington, IN 47405 USA
[3] Indiana Univ, Dept Stat, Bloomington, IN 47408 USA
基金
美国国家科学基金会;
关键词
K-function; Spatial analysis; Global sampling networks; Spherical grids; Global change; INTERPOLATION;
D O I
10.1016/j.spasta.2014.10.001
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Many important environmental, geographic, and geophysical variables are observed at the global scale, so it is important to extend point-pattern methods to the sphere. Here, we develop the K function on the sphere and then evaluate several global data structures and networks. The assumption of complete spatial randomness (CSR) gives a K function that is proportional to the square of distance in Euclidean space, but we find that CSR on the sphere is proportional to 1-cos(angular distance). To evaluate the spherical K function, we analyze two global data structures: latitude-longitude and equidistant hexagonal grids. Due to over-representation of polar regions, latitude-longitude grids produce clustered point patterns. The hexagonal grid is equal-area on the sphere and produces a dispersed point pattern. We also analyze the structure of an observing system for global climate research that is intended to have relatively even spatial coverage. We find that, due to its coastal and continental biases, the climate-station network produces clustered point patterns over a range of distances. Our focus is on planetaryscale geographic point distributions, but we foresee applications of spherical K functions in disciplines such as astronomy, geodetics, anatomy, and neuroscience. Software for spherical point-pattern analysis is available from the authors. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 50 条
  • [1] Handbook of spatial point-pattern analysis in ecology
    Rosenberg, Michael S.
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2015, 29 (09) : 1718 - 1719
  • [2] Handbook of spatial point-pattern analysis in ecology
    Ramsay, Paul M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 916 - 917
  • [3] A NEW APPROACH TO POINT-PATTERN MATCHING
    MURTAGH, F
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1992, 104 (674) : 301 - 307
  • [4] Point-pattern matching using genetic algorithm
    Tsinghua Univ, Beijing, China
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2000, 28 (10): : 36 - 40
  • [5] Faster graphical models for point-pattern matching
    Caetano, Tiberio S.
    McAuley, Julian J.
    [J]. SPATIAL VISION, 2009, 22 (05): : 443 - 453
  • [6] Using edit distance in point-pattern matching
    Mäkinen, V
    [J]. EIGHTH SYMPOSIUM ON STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2001, : 153 - 161
  • [7] Local similarity based point-pattern matching
    Mäkinen, V
    Ukkonen, E
    [J]. COMBINATORIAL PATTERN MATCHING, 2002, 2373 : 115 - 132
  • [8] Point pattern analysis on a region of a sphere
    Lawrence, Thomas
    Baddeley, Adrian
    Milne, Robin K.
    Nair, Gopalan
    [J]. STAT, 2016, 5 (01): : 144 - 157
  • [9] Point-Pattern Synthesis using Gabor and Random Filters
    Huang, Xingchang
    Memari, Pooran
    Seidel, Hans-Peter
    Singh, Gurprit
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (04) : 169 - 179
  • [10] Point-pattern matching method using SURF and Shape Context
    Gui, Yang
    Su, Ang
    Du, Jing
    [J]. OPTIK, 2013, 124 (14): : 1869 - 1873