Efficient correntropy-based multi-view clustering with anchor graph embedding

被引:31
|
作者
Yang, Ben [1 ,2 ]
Zhang, Xuetao [1 ,2 ]
Chen, Badong [1 ,2 ]
Nie, Feiping [3 ,4 ]
Lin, Zhiping [5 ]
Nan, Zhixiong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[4] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Correntropy; Anchor graph; Matrix factorization;
D O I
10.1016/j.neunet.2021.11.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although multi-view clustering has received widespread attention due to its far superior performance to single-view clustering, it still faces the following issues: (1) high computational cost, considering the introduction of multi-view information, reduces the clustering efficiency greatly; (2) complex noises and outliers, existed in real-world data, pose a huge challenge to the robustness of clustering algorithms. Currently, how to increase the efficiency and robustness has become two important issues of multi-view clustering. To cope with the above issues, an efficient correntropy-based multi-view clustering algorithm (ECMC) is proposed in this paper, which can not only improve clustering efficiency by constructing embedded anchor graph and utilizing nonnegative matrix factorization (NMF), but also enhance the robustness by exploring correntropy to suppress various noises and outliers. To further improve clustering efficiency, one of the factors of NMF is constrained to be an indicator matrix instead of a traditional non-negative matrix, so that the categories of samples can be obtained directly without any extra operation. Subsequently, a novel half-quadratic-based strategy is proposed to optimize the non-convex objective function of ECMC. Finally, extensive experiments on eight real-world datasets and eighteen noisy datasets show that ECMC can guarantee faster speed and better robustness than other state-of-the-art multi-view clustering algorithms. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:290 / 302
页数:13
相关论文
共 50 条
  • [21] Scalable and Structural Multi-View Graph Clustering With Adaptive Anchor Fusion
    Wang, Siwei
    Liu, Xinwang
    Liu, Suyuan
    Tu, Wenxuan
    Zhu, En
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4627 - 4639
  • [22] MULTI-VIEW ANCHOR GRAPH HASHING
    Kim, Saehoon
    Choi, Seungjin
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3123 - 3127
  • [23] Bipartite Graph Based Multi-View Clustering
    Li, Lusi
    He, Haibo
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3111 - 3125
  • [24] Multi-view Graph Clustering via Efficient Global-Local Spectral Embedding Fusion
    Wang, Penglei
    Wu, Danyang
    Wang, Rong
    Nie, Feiping
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3268 - 3276
  • [25] Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis
    Liu, Ye
    He, Lifang
    Cao, Bokai
    Yu, Philip S.
    Ragin, Ann B.
    Leow, Alex D.
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 117 - 124
  • [26] Efficient Anchor Learning-based Multi-view Clustering - A Late Fusion Approach
    Zhang, Tiejian
    Liu, Xinwang
    Zhu, En
    Zhou, Sihang
    Dong, Zhibin
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3685 - 3693
  • [27] Anchor Graph-Based Feature Selection for One-Step Multi-View Clustering
    Zhao, Wenhui
    Li, Qin
    Xu, Huafu
    Gao, Quanxue
    Wang, Qianqian
    Gao, Xinbo
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7413 - 7425
  • [28] Multi-View Network Embedding Via Graph Factorization Clustering and Co-Regularized Multi-View Agreement
    Sun, Yiwei
    Bui, Ngot
    Hsieh, Tsung-Yu
    Honavar, Vasant
    [J]. 2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1006 - 1013
  • [29] Structure Diversity-Induced Anchor Graph Fusion for Multi-View Clustering
    Lu, Xun
    Feng, Songhe
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (02)
  • [30] Tensorized Anchor Graph Learning for Large-scale Multi-view Clustering
    Dai, Jian
    Ren, Zhenwen
    Luo, Yunzhi
    Song, Hong
    Yang, Jian
    [J]. COGNITIVE COMPUTATION, 2023, 15 (05) : 1581 - 1592