Contact structures with distinct Heegaard Floer invariants

被引:0
|
作者
Plamenevskaya, O [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Heegaard Floer theory developed by P. Ozsvath and Z. Szabo to give a new proof of a theorem of P. Lisca and G. Matic. In particular, we prove that the contact structures on Y = partial derivativeX induced by non-homotopic Stein structures on the 4-manifold X have distinct Heegaard Floer invariants. Our examples also show that Heegaard Floer homology can distinguish between non-isotopic tight contact structures.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 50 条
  • [31] Surgery obstructions and Heegaard Floer homology
    Hom, Jennifer
    Karakurt, Cagri
    Lidman, Tye
    GEOMETRY & TOPOLOGY, 2016, 20 (04) : 2219 - 2251
  • [32] A survey on Heegaard Floer homology and concordance
    Hom, Jennifer
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (02)
  • [33] Instanton Floer homology and contact structures
    John A. Baldwin
    Steven Sivek
    Selecta Mathematica, 2016, 22 : 939 - 978
  • [34] Instanton Floer homology and contact structures
    Baldwin, John A.
    Sivek, Steven
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (02): : 939 - 978
  • [35] The equivalence of Heegaard Floer homology and embedded contact homology III: from hat to plus
    Colin, Vincent
    Ghiggini, Paolo
    Honda, Ko
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2024, 139 (01): : 349 - 385
  • [36] LECTURE NOTES ON HEEGAARD FLOER HOMOLOGY
    Wong, C.-M. Michael
    Zampa, Sarah
    arXiv,
  • [37] Projective naturality in Heegaard Floer homology
    Gartner, M. I. C. H. A. E. L.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (03): : 963 - 1054
  • [38] APPLICATIONS OF INVOLUTIVE HEEGAARD FLOER HOMOLOGY
    Hendricks, Kristen
    Hom, Jennifer
    Lidman, Tye
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (01) : 187 - 224
  • [39] Bimodules in bordered Heegaard Floer homology
    Lipshitz, Robert
    Ozsvath, Peter S.
    Thurston, Dylan P.
    GEOMETRY & TOPOLOGY, 2015, 19 (02) : 525 - 724
  • [40] Heegaard Floer homology of spatial graphs
    Harvey, Shelly
    O'Donnol, Danielle
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (03): : 1445 - 1525