Learning Map-Independent Evaluation Functions for Real-Time Strategy Games

被引:0
|
作者
Yang, Zuozhi [1 ]
Ontanon, Santiago [1 ]
机构
[1] Drexel Univ, Philadelphia, PA 19104 USA
关键词
real-time strategy; neural networks; MCTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-time strategy (RTS) games have drawn great attention in the AI research community, for they offer a challenging and rich testbed for both machine learning and AI techniques. Due to their enormous state spaces and possible map configurations, learning good and generalizable representations for machine learning is crucial to build agents that can perform well in complex RTS games. In this paper we present a convolutional neural network approach to learn an evaluation function that focuses on learning general features that are independent of the map configuration or size. We first train and evaluate the network on a winner prediction task on a dataset collected with a small set of maps with a fixed size. Then we evaluate the network's generalizability to three set of larger maps. by using it as an evaluation function in the context of Monte Carlo Tree Search. Our results show that the presented architecture can successfully capture general and map-independent features applicable to more complex RTS situations.
引用
收藏
页码:301 / 307
页数:7
相关论文
共 50 条
  • [1] Learning in Real-time Strategy Games
    Padmanabhan, Vineet
    Goud, Pranay
    Pujari, Arun K.
    Sethy, Harshit
    2015 14TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (ICIT 2015), 2015, : 165 - 170
  • [2] EXPERIMENTS WITH ONLINE REINFORCEMENT LEARNING IN REAL-TIME STRATEGY GAMES
    Andersen, Kresten Toftgaard
    Zeng, Yifeng
    Christensen, Dennis Dahl
    Tran, Dung
    APPLIED ARTIFICIAL INTELLIGENCE, 2009, 23 (09) : 855 - 871
  • [3] Search, Abstractions and Learning in Real-Time Strategy Games A Dissertation Summary
    Barriga, Nicolas A.
    KUNSTLICHE INTELLIGENZ, 2020, 34 (01): : 101 - 103
  • [4] Tabular Reinforcement Learning in Real-Time Strategy Games via Options
    Tavares, Anderson R.
    Chaimowicz, Luiz
    PROCEEDINGS OF THE 2018 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG'18), 2018, : 229 - 236
  • [5] Towards safe and sustainable reinforcement learning for real-time strategy games
    Andersen, Per-Arne
    Goodwin, Morten
    Granmo, Ole-Christoffer
    INFORMATION SCIENCES, 2024, 679
  • [6] Scale-Invariant Reinforcement Learning in Real-Time Strategy Games
    Diniz Lemos, Marcelo Luiz Harry
    Vieira, Ronaldo e Silva
    Rocha Tavares, Anderson
    Soriano Marcolino, Leandro
    Chaimowicz, Luiz
    PROCEEDINGS OF THE 22ND BRAZILIAN SYMPOSIUM ON COMPUTER GAMES AND DIGITAL ENTERTAINMENT, SBGAMES, 2023, 2023, : 11 - 19
  • [7] Improved Reinforcement Learning in Asymmetric Real-time Strategy Games via Strategy Diversity
    Dasgupta, Prithviraj
    Kliem, John
    INTERNATIONAL JOURNAL OF SERIOUS GAMES, 2023, 10 (01): : 19 - 38
  • [8] Interfacing Agents to Real-Time Strategy Games
    Jensen, Andreas Schmidt
    Kayso-Rordam, Christian
    Villadsen, Jorgen
    THIRTEENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2015), 2015, 278 : 68 - 77
  • [9] Programmatic Strategies for Real-Time Strategy Games
    Marino, Julian R. H.
    Moraes, Rubens O.
    Oliveira, Tassiana C.
    Toledo, Claudio
    Lelis, Levi H. S.
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 381 - 389
  • [10] Opponent modeling in real-time strategy games
    Schadd, Frederik
    Bakkes, Sander
    Sprouck, Pieter
    GAME-ON 2007: 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT GAMES AND SIMULATION, 2007, : 61 - 68