BACKGROUND Analytical constraints complicate environmental monitoring campaigns of the herbicide glyphosate and its major degradation product aminomethylphosphonic acid (AMPA): their strong sorption to soil minerals requires harsh extraction conditions. Coextracted matrix compounds impair downstream analysis and must be removed before analysis. RESULTS A new extraction method combined with subsequent capillary electrophoresis-mass spectrometry for derivatization-free analysis of glyphosate and AMPA in soil and sediment was developed and applied to a suite of environmental samples. It was compared to three extraction methods from literature. We show that no extraction medium reaches 100% recovery. The new phosphate-supported alkaline extraction method revealed (1) high recoveries of 70-90% for soils and aquatic sediments, (2) limits of detections below 20 mu g kg(-1), and (3) a high robustness, because impairing matrix components (trivalent cations and humic acids) were precipitated prior to the analysis. Soil and sediment samples collected around Tubingen, Germany, revealed maximum glyphosate and AMPA residues of 80 and 2100 mu g kg(-1), respectively, with residues observed along a core of lake sediments. Glyphosate and/or AMPA were found in 40% of arable soils and 57% of aquatic sediment samples. CONCLUSION In this work, we discuss soil parameters that influence (de)sorption and thus extraction. From our results we conclude that residues of glyphosate in environmental samples are easily underestimated. With its possible high throughput, the method presented here can resolve current limitations in monitoring campaigns of glyphosate by addressing soil and aquatic sediment samples with critical sorption characteristics.
机构:
Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
Hubei Prov Key Lab Contaminated Sludge & Soil Sci, Wuhan 430071, Peoples R China
IRSM CAS HK PolyU Joint Lab Solid Waste Sci, Wuhan 430071, Peoples R ChinaChinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
Xu, Yifu
Li, Yuanchuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Cenozo Geol & Environm, Inst Geol & Geophys, Beijing 100029, Peoples R China
Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
Li, Yuanchuan
Wang, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
Hubei Prov Key Lab Contaminated Sludge & Soil Sci, Wuhan 430071, Peoples R China
IRSM CAS HK PolyU Joint Lab Solid Waste Sci, Wuhan 430071, Peoples R ChinaChinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
Wang, Ping
Li, Jiangshan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
Hubei Prov Key Lab Contaminated Sludge & Soil Sci, Wuhan 430071, Peoples R China
IRSM CAS HK PolyU Joint Lab Solid Waste Sci, Wuhan 430071, Peoples R ChinaChinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China