Product Besov and Triebel-Lizorkin Spaces with Application to Nonlinear Approximation

被引:7
|
作者
Georgiadis, Athanasios G. [1 ]
Kyriazis, George [1 ]
Petrushev, Pencho [2 ]
机构
[1] Univ Cyprus, Dept Math & Stat, Nicosia, Cyprus
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
关键词
Product spaces; Besov spaces; Triebel-Lizorkin spaces; phi-Transform; Wavelets; Nonlinear approximation; Jackson estimate; Bernstein estimate; HP-THEORY; DECOMPOSITION; BASES;
D O I
10.1007/s00365-019-09490-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Littlewood-Paley theory of homogeneous product Besov and Triebel-Lizorkin spaces is developed in the spirit of the phi-transform of Frazier and Jawerth. This includes the frame characterization of the product Besov and Triebel-Lizorkin spaces and the development of almost diagonal operators on these spaces. The almost diagonal operators are used to obtain product wavelet decomposition of the product Besov and Triebel-Lizorkin spaces. The main application of this theory is to nonlinear m-term approximation from product wavelets in L-p and Hardy spaces. Sharp Jackson and Bernstein estimates are obtained in terms of product Besov spaces.
引用
收藏
页码:39 / 83
页数:45
相关论文
共 50 条
  • [41] Decomposition of weighted Triebel-Lizorkin and Besov spaces on the ball
    Kyriazis, G.
    Petrushev, P.
    Xu, Yuan
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 : 477 - 513
  • [42] Homogeneous variable exponent Besov and Triebel-Lizorkin spaces
    Almeida, Alexandre
    Diening, Lars
    Hasto, Peter
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (8-9) : 1177 - 1190
  • [43] Difference Characterization of Besov and Triebel-Lizorkin Spaces on Spaces of Homogeneous Type
    Wang, Fan
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 483 - 542
  • [44] A characterization of Triebel-Lizorkin spaces and Besov spaces by BMO families expansion
    Noi, Takahiro
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (04) : 741 - 761
  • [45] Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces
    Han, YS
    Yang, DC
    [J]. STUDIA MATHEMATICA, 2003, 156 (01) : 67 - 97
  • [46] New properties of Besov and Triebel-Lizorkin spaces on RD-spaces
    Dachun Yang
    Yuan Zhou
    [J]. Manuscripta Mathematica, 2011, 134 : 59 - 90
  • [47] New properties of Besov and Triebel-Lizorkin spaces on RD-spaces
    Yang, Dachun
    Zhou, Yuan
    [J]. MANUSCRIPTA MATHEMATICA, 2011, 134 (1-2) : 59 - 90
  • [48] Herz type Besov and Triebel-Lizorkin spaces with variable exponent
    Shi, Chune
    Xu, Jingshi
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 907 - 921
  • [49] Lebesgue Points of Besov and Triebel-Lizorkin Spaces with Generalized Smoothness
    Li, Ziwei
    Yang, Dachun
    Yuan, Wen
    [J]. MATHEMATICS, 2021, 9 (21)
  • [50] A note on rough singular integrals in Triebel-Lizorkin spaces and Besov spaces
    Liu, Feng
    Wu, Huoxiong
    Zhang, Daiqing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,