Applications of machine learning methods in port operations-A systematic literature review

被引:56
|
作者
Filom, Siyavash [1 ]
Amiri, Amir M. [2 ]
Razavi, Saiedeh [1 ]
机构
[1] McMaster Univ, McMaster Inst Transportat & Logist, Civil Engn Dept, Hamilton, ON, Canada
[2] McMaster Univ, McMaster Inst Transportat & Logist, Hamilton, ON, Canada
关键词
Seaport; Port; Machine learning; Data analytics; Systematic literature review; Container terminals; CONTAINER THROUGHPUT; BIG DATA; NEURAL-NETWORKS; OPTIMIZATION; ALLOCATION; TIME; ANALYTICS; MODEL; ALGORITHMS; PREDICTION;
D O I
10.1016/j.tre.2022.102722
中图分类号
F [经济];
学科分类号
02 ;
摘要
Ports are pivotal nodes in supply chain and transportation networks, in which most of the existing data remain underutilized. Machine learning methods are versatile tools to utilize and harness the hidden power of the data. Considering ever-growing adoption of machine learning as a data driven decision-making tool, the port industry is far behind other modes of transportation in this transition. To fill the gap, we aimed to provide a comprehensive systematic literature review on this topic to analyze the previous research from different perspectives such as area of the application, type of application, machine learning method, data, and location of the study. Results showed that the number of articles in the field has been increasing annually, and the most prevalent use case of machine learning methods is to predict different port characteristics. However, there are emerging prescriptive and autonomous use cases of machine learning methods in the literature. Furthermore, research gaps and challenges are identified, and future research directions have been discussed from method-centric and application-centric points of view.
引用
收藏
页数:30
相关论文
共 50 条
  • [11] Criteria for Assessing the Sustainability of Logging Operations-A Systematic Review
    Gruenberg, Julian
    Ghaffariyan, Mohammad Reza
    Jourgholami, Meghdad
    Labelle, Eric R.
    Kaakkurivaara, Nopparat
    Goncalves Robert, Renato Cesar
    Kuehmaier, Martin
    CURRENT FORESTRY REPORTS, 2023, 9 (05): : 350 - 369
  • [12] A systematic literature review of machine learning methods applied to predictive maintenance
    Carvalho, Thyago P.
    Soares, Fabrizzio A. A. M. N.
    Vita, Roberto
    Francisco, Robert da P.
    Basto, Joao P.
    Alcala, Symone G. S.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 137
  • [13] Hybrid approaches to optimization and machine learning methods: a systematic literature review
    Azevedo, Beatriz Flamia
    Rocha, Ana Maria A. C.
    Pereira, Ana I.
    MACHINE LEARNING, 2024, 113 (07) : 4055 - 4097
  • [14] Systematic literature review: Machine learning techniques (machine learning)
    Alfaro, Anderson Damian Jimenez
    Ospina, Jose Vicente Diaz
    CUADERNO ACTIVA, 2021, (13): : 113 - 121
  • [15] Machine learning and automated systematic literature review: a systematic review
    Tsunoda, Denise Fukumi
    da Conceicao Moreira, Paulo Sergio
    Ribeiro Guimaraes, Andre Jose
    REVISTA TECNOLOGIA E SOCIEDADE, 2020, 16 (45): : 337 - 354
  • [16] A systematic literature review of software effort prediction using machine learning methods
    Ali, Asad
    Gravino, Carmine
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2019, 31 (10)
  • [17] A systematic literature review on recent trends of machine learning applications in additive manufacturing
    Xames, Md Doulotuzzaman
    Torsha, Fariha Kabir
    Sarwar, Ferdous
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (06) : 2529 - 2555
  • [18] Machine learning applications in detection and diagnosis of urology cancers: a systematic literature review
    M. Lubbad
    D. Karaboga
    A. Basturk
    B. Akay
    U. Nalbantoglu
    I. Pacal
    Neural Computing and Applications, 2024, 36 : 6355 - 6379
  • [19] Machine learning applications in detection and diagnosis of urology cancers: a systematic literature review
    Lubbad, M.
    Karaboga, D.
    Basturk, A.
    Akay, B.
    Nalbantoglu, U.
    Pacal, I.
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (12): : 6355 - 6379
  • [20] A systematic literature review on recent trends of machine learning applications in additive manufacturing
    Md Doulotuzzaman Xames
    Fariha Kabir Torsha
    Ferdous Sarwar
    Journal of Intelligent Manufacturing, 2023, 34 : 2529 - 2555