GFA: Exploratory Analysis of Multiple Data Sources with Group Factor Analysis

被引:0
|
作者
Leppaaho, Eemeli [1 ]
Ammad-ud-din, Muhammad [1 ]
Kaski, Samuel [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, HIIT, POB 15400, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Bayesian latent variable modelling; biclustering; data integration; factor analysis; multi-view learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The R package GFA provides a full pipeline for factor analysis of multiple data sources that are represented as matrices with co-occurring samples. It allows learning dependencies between subsets of the data sources, decomposed into latent factors. The package also implements sparse priors for the factorization, providing interpretable biclusters of the multi-source data.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [41] MULTIPLE CAUSE-OF-DEATH DATA IN THE CZECH REPUBLIC: AN EXPLORATORY ANALYSIS
    Pechholdova, Marketa
    [J]. DEMOGRAFIE, 2014, 56 (04) : 335 - 346
  • [42] On the number of factors to retain in exploratory factor analysis for ordered categorical data
    Yanyun Yang
    Yan Xia
    [J]. Behavior Research Methods, 2015, 47 : 756 - 772
  • [43] Exploratory Factor Analysis of Data Matrices With More Variables Than Observations
    Trendafilov, Nickolay T.
    Unkel, Steffen
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 874 - 891
  • [44] Spatial and Temporal Exploratory Factor Analysis of Urban Mobile Data Traffic
    Angelo Furno
    André Felipe Zanella
    Razvan Stanica
    Marco Fiore
    [J]. Data Science for Transportation, 2024, 6 (1):
  • [45] Exploratory Factor Analysis of Observational Parent-Child Interaction Data
    Richmond, Sally
    Schwartz, Orli
    Johnson, Katherine A.
    Seal, Marc L.
    Bray, Katherine
    Deane, Camille
    Sheeber, Lisa B.
    Allen, Nicholas B.
    Whittle, Sarah
    [J]. ASSESSMENT, 2020, 27 (08) : 1758 - 1776
  • [46] Recommended Sample Size for Conducting Exploratory Factor Analysis on Dichotomous Data
    Pearson, Robert H.
    Mundfrom, Daniel J.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2010, 9 (02) : 359 - 368
  • [47] A multiple testing protocol for exploratory data analysis and the local misclassification rate
    Watts, David D.
    Habiger, Joshua D.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (15) : 3588 - 3604
  • [48] On the number of factors to retain in exploratory factor analysis for ordered categorical data
    Yang, Yanyun
    Xia, Yan
    [J]. BEHAVIOR RESEARCH METHODS, 2015, 47 (03) : 756 - 772
  • [49] Integrated analysis of spatial data from multiple sources: an overview
    Gong, P.
    [J]. Canadian Journal of Remote Sensing, 1994, 20 (04) : 349 - 359
  • [50] Integrative and regularized principal component analysis of multiple sources of data
    Liu, Binghui
    Shen, Xiaotong
    Pan, Wei
    [J]. STATISTICS IN MEDICINE, 2016, 35 (13) : 2235 - 2250