We investigate the profinite completions of a certain family of groups acting on trees. It turns out that for some of the groups considered, the completions coincide with the closures of the groups in the full group of tree automorphisms. However, we introduce an infinite series of groups for which that is not so, and describe the kernels of natural homomorphisms of the profinite completions onto the aforementioned closures of respective groups. (c) 2006 Elsevier Inc. All rights reserved.
机构:
Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, EnglandCtr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Wilton, Henry
Zalesskii, Pavel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, BrazilCtr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Zalesskii, Pavel
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES,
2017,
96
: 293
-
308
机构:
CNRS Univ Paris Est Marne la Vallee, LAMA UMR 8050, F-77454 Marne La Vallee 2, FranceCNRS Univ Paris Est Marne la Vallee, LAMA UMR 8050, F-77454 Marne La Vallee 2, France
Houdayer, Cyril
Raum, Sven
论文数: 0引用数: 0
h-index: 0
机构:
RIMS, Sakyo Ku, Kyoto 6068502, JapanCNRS Univ Paris Est Marne la Vallee, LAMA UMR 8050, F-77454 Marne La Vallee 2, France