Thermal Degradation and Stability of Accelerated-curing Phenol-formaldehyde Resin

被引:0
|
作者
Chen, Yuzhu [1 ]
Fan, Dongbin [1 ]
Qin, Tefu [1 ]
Chu, Fuxiang [1 ]
机构
[1] Chinese Acad Forestry, Res Inst Wood Ind, Beijing 100091, Peoples R China
来源
BIORESOURCES | 2014年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
Accelerators; Kinetics; Phenol-formaldehyde resin; Thermal degradation; COORDINATED METAL LIGANDS; ALKALINE PF RESINS; ADHESIVE RESINS; UREA; KINETICS; CONDENSATION; THERMOLYSIS; MECHANISM; ESTERS; CURE;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
In order to study the thermal stability of accelerated-curing PF resin, the curing behavior of fresh PF resin was investigated in the presence of single accelerator of methylolurea derivatives (MMU), magnesium hydrate (Mg(OH)(2)), 25% aqueous solution of sodium carbonate (Na2CO3), and propylene carbonate (PC). Also their optimum combination was added in fresh PF resin. The thermal stability of cured phenol-formaldehyde (PF) resins was studied using thermogravimetric analysis TG/DTA in air with heating rates of 5, 10, 15, and 20 degrees C min(-1) Thermal degradation kinetics were investigated using the Kissinger and Flynn-Wall-Ozawa methods. The results show that these accelerators can promote fresh PF resin fast curing, and the degradation of accelerated-curing cured PF resin can be divided into three stages. Single accelerator MMU, Mg(OH)(2), and Na2CO3 can promote fresh PF curing at low temperatures in the first stage, while the structure of PF resin which was added with MMU and PC was more rigid, according to thermal degradation kinetics. A novel fast curing agent which is compound with MMU+Na2CO3 for PF resin is proposed; not only can it maintain the advantage of fast curing of the single accelerator Na2CO3, but it also improves the thermal stability of PF resin.
引用
收藏
页码:4063 / 4075
页数:13
相关论文
共 50 条
  • [31] THERMODYNAMIC PROPERTIES OF PHENOL-FORMALDEHYDE RESIN
    HARWOOD, C
    WOSTENHOLM, GH
    YATES, B
    BADAMI, DV
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1978, 16 (05) : 759 - 766
  • [32] Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraformaldehyde
    Liu, YF
    Gao, JG
    Zhang, RZ
    POLYMER DEGRADATION AND STABILITY, 2002, 77 (03) : 495 - 501
  • [34] STUDY OF RADIATION CURING OF PHENOL-FORMALDEHYDE OLIGOMERS
    OMELCHENKO, SI
    SHLAPATSKAYA, VV
    PYANKOV, GN
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1978, 20 (02): : 333 - 337
  • [35] A novel thermal degradation mechanism of phenol-formaldehyde type resins
    Chen Yangfei
    Chen Zhiqin
    Xiao Shaoyi
    Liu Hongbo
    THERMOCHIMICA ACTA, 2008, 476 (1-2) : 39 - 43
  • [36] CURING OF PHENOL-FORMALDEHYDE RESINS .3.
    GYEVI, EB
    TUDOS, F
    ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1974, 38 (AUG9): : 27 - 33
  • [37] Curing kinetics of boron-containing phenol-formaldehyde resin formed from paraformaldehyde
    Liu, YF
    Gao, JG
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2002, 34 (11) : 638 - 644
  • [38] Effect of synthesis parameters on thermal behavior of phenol-formaldehyde resol resin
    Park, BD
    Riedl, B
    Kim, YS
    So, WT
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 83 (07) : 1415 - 1424
  • [39] SOME ASPECTS OF THE THERMAL ANNEALING PROCESS IN A PHENOL-FORMALDEHYDE RESIN CHAR
    SUUBERG, EM
    WOJTOWICZ, M
    CALO, JM
    CARBON, 1989, 27 (03) : 431 - 440
  • [40] Effects of initial phenol-formaldehyde (PF) reaction products on the curing properties of PF resin
    Tonge, LY
    Hodgkin, J
    Blicblau, AS
    Collins, PJ
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2001, 64 (02): : 721 - 730