Pricing turbo warrants under mixed-exponential jump diffusion model

被引:0
|
作者
Yu, Jianfeng [1 ]
Xu, Weidong [1 ]
机构
[1] Zhejiang Univ, Sch Management, 388 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China
关键词
Exotic option; Turbo warrants; Mixed-exponential jump diffusion; Laplace transform; Euler method; 1ST PASSAGE TIMES; OPTIONS;
D O I
10.1016/j.physa.2015.12.158
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Turbo warrant is a special type of barrier options in which the rebate is calculated as another exotic option. In this paper, using Laplace transforms we obtain the valuation of turbo warrant under the mixed-exponential jump diffusion model, which is able to approximate any jump size distribution. The numerical Laplace inversion examples verify that the analytical solutions are accurate. The results of simulation confirm the argument that jump risk should not be ignored in the valuation of turbo warrants. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:490 / 501
页数:12
相关论文
共 50 条
  • [31] A jump-diffusion model for option pricing
    Kou, SG
    [J]. MANAGEMENT SCIENCE, 2002, 48 (08) : 1086 - 1101
  • [32] Analytical pricing of vulnerable options under a generalized jump-diffusion model
    Fard, Farzad Alavi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2015, 60 : 19 - 28
  • [33] MODEL FOR WARRANTS AND TURBO CERTIFICATES PRICING WITH UNDERLYING ASSETS FROM THE CROATIAN CAPITAL MARKET
    Marasovic, Branka
    Sego, Bosko
    [J]. EKONOMSKI PREGLED, 2011, 62 (7-8): : 345 - 382
  • [34] Valuing Credit Default Swap under a double exponential jump diffusion model
    Rui-cheng Yang
    Mao-xiu Pang
    Zhuang Jin
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 36 - 43
  • [35] Efficient variance reduction methods for Asian option pricing under exponential jump-diffusion models
    Lai, Yongzeng
    Zeng, Yan
    Xi, Xiaojing
    [J]. ADVANCES IN MATHEMATICAL AND COMPUTATIONAL METHODS: ADDRESSING MODERN CHALLENGES OF SCIENCE, TECHNOLOGY, AND SOCIETY, 2011, 1368
  • [36] Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy
    Chiang M.-H.
    Li C.-Y.
    Chen S.-N.
    [J]. Review of Quantitative Finance and Accounting, 2016, 46 (3) : 459 - 482
  • [37] Pricing Vulnerable Option under Jump-Diffusion Model with Incomplete Information
    Yang Jiahui
    Zhou Shengwu
    Zhou Haitao
    Guo Kaiqiang
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [38] Pricing double-barrier options under a flexible jump diffusion model
    Cai, Ning
    Chen, Nan
    Wan, Xiangwei
    [J]. OPERATIONS RESEARCH LETTERS, 2009, 37 (03) : 163 - 167
  • [39] Fractional Jump-diffusion Pricing Model under Stochastic Interest Rate
    Xue, Hong
    Lu, Junxiang
    Li, Qiaoyan
    Wang, Xiaodong
    [J]. INFORMATION AND FINANCIAL ENGINEERING, ICIFE 2011, 2011, 12 : 428 - 432
  • [40] Pricing European option under the generalized fractional jump-diffusion model
    Guo, Jingjun
    Wang, Yubing
    Kang, Weiyi
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1917 - 1947