Inhibition of H5N1 highly pathogenic influenza virus by suppressing a specific sialyltransferase

被引:9
|
作者
Monteerarat, Yuwarat [2 ]
Suptawiwat, Ornpreya [1 ]
Boonarkart, Chompunuch [1 ]
Uiprasertkul, Mongkol [3 ]
Auewarakul, Prasert [1 ]
Viprakasit, Vip [4 ]
机构
[1] Mahidol Univ, Dept Microbiol, Fac Med, Siriraj Hosp, Bangkok 10700, Thailand
[2] Mahidol Univ, Dept Immunol, Fac Med, Siriraj Hosp, Bangkok 10700, Thailand
[3] Mahidol Univ, Dept Pathol, Fac Med, Siriraj Hosp, Bangkok 10700, Thailand
[4] Mahidol Univ, Dept Pediat, Fac Med, Siriraj Hosp, Bangkok 10700, Thailand
关键词
RESPIRATORY-DISTRESS-SYNDROME; RECEPTOR SPECIFICITY; HOST-RANGE; GAL-BETA-1,3GALNAC ALPHA-2,3-SIALYLTRANSFERASE; MOLECULAR-CLONING; HUMAN TISSUES; HUMAN AIRWAY; A VIRUSES; EXPRESSION; HEMAGGLUTININ;
D O I
10.1007/s00705-010-0658-4
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Avian influenza viruses preferentially use alpha 2,3-linked sialic acid as a receptor for binding and entry into target cells. The sialic acid is the terminal residue of various types of glycan. There are two major types of alpha 2,3-linked sialic acid differing in the penultimate bond: Neu5Ac alpha 2-3Gal beta 1-3GalNAc and Neu5Ac alpha 2-3Gal beta 1-4GlcNAc. In the human airway, while Neu5Ac alpha 2-3Gal beta 1-3GalNAc is present only in alveolar epithelial cells, the Neu5Ac alpha 2-3Gal beta 1-4GlcNAc is expressed in both the upper and lower airway. Previous data showed preferential binding of hemagglutinin from H5N1 highly pathogenic influenza virus to Neu5Ac alpha 2-3Gal beta 1-4GlcNAc. We further show here that suppression of this sialic acid by siRNA against a sialyltransferase, ST3GAL4, can inhibit H5N1 avian influenza virus infection and that this gene is abundantly expressed in human pharynx, trachea and bronchus. These data suggest that the ST3GAL4 gene is responsible for biosynthesis of the viral receptor and may play a crucial role in infection of H5N1 avian influenza virus in humans.
引用
收藏
页码:889 / 893
页数:5
相关论文
共 50 条
  • [31] Prophylactic effects of chitin microparticles on highly pathogenic H5N1 influenza virus
    Ichinohe, Takeshi
    Nagata, Noriyo
    Strong, Peter
    Tamura, Shin-ichi
    Takahashi, Hidehiro
    Ninomiya, Ai
    Imai, Masaki
    Odagiri, Takato
    Tashiro, Masato
    Sawa, Hirofumi
    Chiba, Joe
    Kurata, Takeshi
    Sata, Tetsutaro
    Hasegawa, Hideki
    [J]. JOURNAL OF MEDICAL VIROLOGY, 2007, 79 (06) : 811 - 819
  • [32] Experimental infection of cattle with highly pathogenic avian influenza virus (H5N1)
    Kalthoff, Donata
    Hoffmann, Bernd
    Harder, Timm
    Durban, Markus
    Beer, Martin
    [J]. EMERGING INFECTIOUS DISEASES, 2008, 14 (07) : 1132 - 1134
  • [33] The susceptibility of magpies to a highly pathogenic avian influenza virus subtype H5N1
    Kwon, K. Y.
    Joh, S. J.
    Kim, M. C.
    Kang, M. S.
    Lee, Y. J.
    Kwon, J. H.
    Kim, J. H.
    [J]. POULTRY SCIENCE, 2010, 89 (06) : 1156 - 1161
  • [34] First case of highly pathogenic H5N1 avian influenza virus in Spain
    Barral, M.
    Alvarez, V.
    Juste, R. A.
    Agirre, I.
    Inchausti, I.
    [J]. BMC VETERINARY RESEARCH, 2008, 4 (1)
  • [35] Mucosal administration of raccoonpox virus expressing highly pathogenic avian H5N1 influenza neuraminidase is highly protective against H5N1 and seasonal influenza virus challenge
    Kingstad-Bakke, Brock
    Kamlangdee, Attapon
    Osorio, Jorge E.
    [J]. VACCINE, 2015, 33 (39) : 5155 - 5162
  • [36] Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge
    Li, Zhuo
    Mooney, Alaina J.
    Gabbard, Jon D.
    Gao, Xiudan
    Xu, Pei
    Place, Ryan J.
    Hogan, Robert J.
    Tompkins, S. Mark
    He, Biao
    [J]. JOURNAL OF VIROLOGY, 2013, 87 (01) : 354 - 362
  • [37] Evolution of Highly Pathogenic Avian Influenza A(H5N1) Virus in Poultry, Togo, 2018
    Fusade-Boyer, Maxime
    Pato, Pidemnewe S.
    Komlan, Mathias
    Dogno, Koffi
    Jeevan, Trushar
    Rubrum, Adam
    Kouakou, Casimir K.
    Couacy-Hymann, Emmanuel
    Batawui, Daniel
    Go-Maro, Emilie
    McKenzie, Pamela
    Webby, Richard J.
    Ducatez, Mariette F.
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2287 - 2289
  • [38] Highly Pathogenic Influenza A(H5N1) Virus Survival in Complex Artificial Aquatic Biotopes
    Horm, Viseth Srey
    Gutierrez, Ramona A.
    Nicholls, John M.
    Buchy, Philippe
    [J]. PLOS ONE, 2012, 7 (04):
  • [39] Mice infected with highly pathogenic H5N1 influenza virus develop Parkinsonian pathology
    Jang, H.
    Boltz, D.
    Ramirez, K.
    Shephard, K.
    Jiao, Y.
    Webster, R.
    Smeyne, R.
    [J]. PARKINSONISM & RELATED DISORDERS, 2009, 15 : S165 - S165
  • [40] Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia
    Li, KS
    Guan, Y
    Wang, J
    Smith, GJD
    Xu, KM
    Duan, L
    Rahardjo, AP
    Puthavathana, P
    Buranathai, C
    Nguyen, TD
    Estoepangestie, ATS
    Chaisingh, A
    Auewarakul, P
    Long, HT
    Hanh, NTH
    Webby, RJ
    Poon, LLM
    Chen, H
    Shortridge, KF
    Yuen, KY
    Webster, RG
    Peiris, JSM
    [J]. NATURE, 2004, 430 (6996) : 209 - 213