Robust mixture modeling using the skew t distribution

被引:140
|
作者
Lin, Tsung I. [1 ]
Lee, Jack C.
Hsieh, Wan J.
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
[2] Natl Chiao Tung Univ, Grad Inst Finance, Hsinchu, Taiwan
[3] Natl Chiao Tung Univ, Inst Stat, Hsinchu, Taiwan
关键词
EM-type algorithms; maximum likelihood; outlying observations; PX-EM algorithm; skew t mixtures; truncated normal;
D O I
10.1007/s11222-006-9005-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 50 条
  • [21] Finite mixture modelling using the skew normal distribution
    Lin, Tsung I.
    Lee, Jack C.
    Yen, Shu Y.
    [J]. STATISTICA SINICA, 2007, 17 (03) : 909 - 927
  • [22] Robust statistical modelling using the multivariate skew t distribution with complete and incomplete data
    Lin, Tsung-I
    Lin, Tzy-Chy
    [J]. STATISTICAL MODELLING, 2011, 11 (03) : 253 - 277
  • [23] Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution
    de Alencar, Francisco H. C.
    Galarza, Christian E.
    Matos, Larissa A.
    Lachos, Victor H.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2022, 16 (03) : 521 - 557
  • [24] Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution
    Francisco H. C. de Alencar
    Christian E. Galarza
    Larissa A. Matos
    Victor H. Lachos
    [J]. Advances in Data Analysis and Classification, 2022, 16 : 521 - 557
  • [25] Robust linear mixed models using the skew t distribution with application to schizophrenia data
    Ho, Hsiu J.
    Lin, Tsung-I.
    [J]. BIOMETRICAL JOURNAL, 2010, 52 (04) : 449 - 469
  • [26] ROBUST REGRESSION MODELING VIA PARAMETRIC LIKELIHOODS: AN ALTERNATIVE TO USING THE SKEW t DISTRIBUTION AND SEVERAL RANK-BASED METHODS
    Tsou, Tsung-Shan
    Hsiao, Wei-Cheng
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2014, 40 (02) : 109 - 132
  • [27] Robust mixture modeling based on scale mixtures of skew-normal distributions
    Basso, Rodrigo M.
    Lachos, Victor H.
    Barbosa Cabral, Celso Romulo
    Ghosh, Pulak
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 2926 - 2941
  • [28] Mixture modeling of freeway speed and headway data using multivariate skew-t distributions
    Zou, Yajie
    Yang, Hang
    Zhang, Yunlong
    Tang, Jinjun
    Zhang, Weibin
    [J]. TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2017, 13 (07) : 657 - 678
  • [29] Skew t mixture of experts
    Chamroukhi, F.
    [J]. NEUROCOMPUTING, 2017, 266 : 390 - 408
  • [30] Robust variable selection in finite mixture of regression models using the t distribution
    Dai, Lin
    Yin, Junhui
    Xie, Zhengfen
    Wu, Liucang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (21) : 5370 - 5386