Bootstrap-based inferential improvements to the simplex nonlinear regression model

被引:2
|
作者
Silva, Alisson de Oliveira [1 ]
Silva, Jonas Weverson de Ararujo [2 ]
Espinheira, Patricia L. [3 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Paraiba, Joao Pessoa, Brazil
[2] Ctr Ciencias Agr, Dept Ciencias Fundamentais & Sociais, Areia, PB, Brazil
[3] Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil
来源
PLOS ONE | 2022年 / 17卷 / 08期
关键词
BETA-REGRESSION; MARGINAL MODELS; DISPERSION; RATES;
D O I
10.1371/journal.pone.0272512
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we evaluate the performance of point and interval estimators based on the maximum likelihood(ML) method for the nonlinear simplex regression model. Inferences based on traditional maximum likelihood estimation have good asymptotic properties, but their performance in small samples may not be satisfactory. At out set we consider the maximum likelihood estimation for the parameters of the nonlinear simplex regression model, and so we introduced a bootstrap-based correction for such estimators of this model. We also develop the percentile and bootstrap(t) confidence intervals for those parameters as competitors to the traditional approximate confidence interval based on the asymptotic normality of the maximum likelihood estimators (MLEs). We then numerically evaluate the performance of these different methods for estimating the simplex regression model. The numerical evidence favors inference based on the bootstrap method, in special the bootstrap(t) interval, which was decisive in an application to real data.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Bootstrap-based inferential improvements in beta autoregressive moving average model
    Palm, Bruna Gregory
    Bayer, Fabio M.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (04) : 977 - 996
  • [2] Bootstrap-based improvements for inference with clustered errors
    Cameron, A. Colin
    Gelbach, Jonah B.
    Miller, Douglas L.
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 2008, 90 (03) : 414 - 427
  • [3] THE BOOTSTRAP-BASED SELECTION CRITERIA: AN OPTIMAL CHOICE FOR MODEL SELECTION IN LINEAR REGRESSION
    Shang, Junfeng
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2010, 14 (02) : 173 - 189
  • [4] Bootstrap-based Selection for Instrumental Variables Model
    Wang, Wenjie
    Liu, Qingfeng
    [J]. ECONOMICS BULLETIN, 2015, 35 (03): : 1886 - +
  • [5] BOOTSTRAP-BASED BANDWIDTH CHOICE FOR LOG-PERIODOGRAM REGRESSION
    Arteche, Josu
    Orbe, Jesus
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (06) : 591 - 617
  • [6] A bootstrap-based strategy for spectral interval selection in PLS regression
    Bras, Ligia P.
    Lopes, Marta
    Ferreira, Ana P.
    Menezes, Jose C.
    [J]. JOURNAL OF CHEMOMETRICS, 2008, 22 (11-12) : 695 - 700
  • [7] Bootstrap-based model selection criteria for beta regressions
    Fábio M. Bayer
    Francisco Cribari-Neto
    [J]. TEST, 2015, 24 : 776 - 795
  • [8] A bootstrap-based aggregate classifier for model-based clustering
    José G. Dias
    Jeroen K. Vermunt
    [J]. Computational Statistics, 2008, 23 : 643 - 659
  • [9] Subspace and Bootstrap-Based Techniques for Helicopter Model Identification
    Li, Ping
    Postlethwaite, Ian
    [J]. JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2011, 56 (01)
  • [10] A bootstrap-based aggregate classifier for model-based clustering
    Dias, Jose G.
    Vermunt, Jeroen K.
    [J]. COMPUTATIONAL STATISTICS, 2008, 23 (04) : 643 - 659