Bootstrap-based inferential improvements in beta autoregressive moving average model

被引:9
|
作者
Palm, Bruna Gregory [1 ]
Bayer, Fabio M. [1 ,2 ]
机构
[1] Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil
[2] Univ Fed Pernambuco, LACESM, Recife, PE, Brazil
关键词
ARMA; Beta distribution; Bootstrap corrections; Forecasting; Small sample inference; TIME-SERIES; FORECAST ACCURACY; BIAS CORRECTION; REGRESSION; ESTIMATORS;
D O I
10.1080/03610918.2017.1300268
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the issue of performing accurate small sample inference in beta autoregressive moving average model, which is useful for modeling and forecasting continuous variables that assume values in the interval (0,1). The inferences based on conditional maximum likelihood estimation have good asymptotic properties, but their performances in small samples may be poor. This way, we propose bootstrap bias corrections of the point estimators and different bootstrap strategies for confidence interval improvements. Our Monte Carlo simulations show that finite sample inference based on bootstrap corrections is much more reliable than the usual inferences. We also presented an empirical application.
引用
收藏
页码:977 / 996
页数:20
相关论文
共 50 条
  • [1] Bootstrap-based inferential improvements to the simplex nonlinear regression model
    Silva, Alisson de Oliveira
    Silva, Jonas Weverson de Ararujo
    Espinheira, Patricia L.
    [J]. PLOS ONE, 2022, 17 (08):
  • [2] Bootstrap-based inference in models with a nearly noninvertible moving average component
    Gospodinov, N
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2002, 20 (02) : 254 - 268
  • [3] Bootstrap-based model selection criteria for beta regressions
    Fábio M. Bayer
    Francisco Cribari-Neto
    [J]. TEST, 2015, 24 : 776 - 795
  • [4] Prediction intervals in the beta autoregressive moving average model
    Palm, Bruna Gregory
    Bayer, Fabio M.
    Cintra, Renato J.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (08) : 3635 - 3656
  • [5] Bootstrap-based model selection criteria for beta regressions
    Bayer, Fabio M.
    Cribari-Neto, Francisco
    [J]. TEST, 2015, 24 (04) : 776 - 795
  • [6] Bootstrap-based improvements for inference with clustered errors
    Cameron, A. Colin
    Gelbach, Jonah B.
    Miller, Douglas L.
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 2008, 90 (03) : 414 - 427
  • [7] Signal detection and inference based on the beta binomial autoregressive moving average model
    Palm, Bruna G.
    Bayer, Fabio M.
    Cintra, Renato J.
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 109
  • [8] Beta autoregressive moving average models
    Andréa V. Rocha
    Francisco Cribari-Neto
    [J]. TEST, 2009, 18 : 529 - 545
  • [9] Beta autoregressive moving average models
    Rocha, Andrea V.
    Cribari-Neto, Francisco
    [J]. TEST, 2009, 18 (03) : 529 - 545
  • [10] Bootstrap-based testing inference in beta regressions
    Lima, Fabio P.
    Cribari-Neto, Francisco
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2020, 34 (01) : 18 - 34