Sensitivity analysis in Gaussian Bayesian networks using a divergence measure

被引:16
|
作者
Gomez-Villegas, Miguel A. [1 ]
Main, Paloma
Susi, Rosario
机构
[1] Univ Complutense Madrid, Dept Stat & Operat Res, Madrid, Spain
[2] Univ Complutense Madrid, Dept Stat & Operat Res 3, Madrid, Spain
关键词
Gaussian Bayesian network; Kullback-Leibler divergence; sensitivity analysis;
D O I
10.1080/03610920600853282
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article develops a method for computing the sensitivity analysis in a Gaussian Bayesian network. The measure presented is based on the Kullback-Leibler divergence and is useful to evaluate the impact of prior changes over the posterior marginal density of the target variable in the network. We find that some changes do not disturb the posterior marginal density of interest. Finally, we describe a method to compare different sensitivity measures obtained depending on where the inaccuracy was. An example is used to illustrate the concepts and methods presented.
引用
收藏
页码:523 / 539
页数:17
相关论文
共 50 条
  • [21] Sensitivity analysis for Bayesian networks with interval probabilities
    Tolo, S.
    Patelli, E.
    Beer, M.
    RISK, RELIABILITY AND SAFETY: INNOVATING THEORY AND PRACTICE, 2017, : 306 - 312
  • [22] Component Importance and Sensitivity Analysis in Bayesian Networks
    Zhong, Xiaopin
    Li, Qiu
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (QR2MSE), VOLS I-IV, 2013, : 320 - 325
  • [23] SENSITIVITY ANALYSIS FOR PROBABILITY ASSESSMENTS IN BAYESIAN NETWORKS
    BLACKMOND, K
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (06): : 901 - 909
  • [24] Efficient global sensitivity analysis of biochemical networks using Gaussian process regression
    Kurdyaeva, Tamara
    Milias-Argeitis, Andreas
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 2673 - 2678
  • [25] Using Bayesian Networks to Measure Web Service QoS
    Chang Guofeng
    PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON COMMUNICATION, ELECTRONICS AND AUTOMATION ENGINEERING, 2013, 181 : 1233 - 1238
  • [26] Sensitivity Analysis of Stroke Predictors Using Structural Equation Modeling and Bayesian Networks
    Oliveira, Helder C. R.
    Yanushkevich, Svetlana
    Almekhlafi, Mohammed
    2022 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (IEEE CIBCB 2022), 2022, : 187 - 194
  • [27] On the zero-modified poisson model: Bayesian analysis and posterior divergence measure
    Katiane S. Conceição
    Marinho G. Andrade
    Francisco Louzada
    Computational Statistics, 2014, 29 : 959 - 980
  • [28] On the zero-modified poisson model: Bayesian analysis and posterior divergence measure
    Conceicao, Katiane S.
    Andrade, Marinho G.
    Louzada, Francisco
    COMPUTATIONAL STATISTICS, 2014, 29 (05) : 959 - 980
  • [29] ROBUST BAYESIAN-ANALYSIS USING DIVERGENCE MEASURES
    DEY, DK
    BIRMIWAL, LR
    STATISTICS & PROBABILITY LETTERS, 1994, 20 (04) : 287 - 294
  • [30] Gaussian Mixture Models for Affordance Learning using Bayesian Networks
    Osorio, Pedro
    Bernardino, Alexandre
    Martinez-Cantin, Ruben
    Santos-Victor, Jose
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,