Sensitivity analysis in Gaussian Bayesian networks using a divergence measure

被引:16
|
作者
Gomez-Villegas, Miguel A. [1 ]
Main, Paloma
Susi, Rosario
机构
[1] Univ Complutense Madrid, Dept Stat & Operat Res, Madrid, Spain
[2] Univ Complutense Madrid, Dept Stat & Operat Res 3, Madrid, Spain
关键词
Gaussian Bayesian network; Kullback-Leibler divergence; sensitivity analysis;
D O I
10.1080/03610920600853282
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article develops a method for computing the sensitivity analysis in a Gaussian Bayesian network. The measure presented is based on the Kullback-Leibler divergence and is useful to evaluate the impact of prior changes over the posterior marginal density of the target variable in the network. We find that some changes do not disturb the posterior marginal density of interest. Finally, we describe a method to compare different sensitivity measures obtained depending on where the inaccuracy was. An example is used to illustrate the concepts and methods presented.
引用
收藏
页码:523 / 539
页数:17
相关论文
共 50 条
  • [1] A novel divergence for sensitivity analysis in Gaussian Bayesian networks
    Zhu, Mingmin
    Liu, Sanyang
    Jiang, Jiewei
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 90 : 37 - 55
  • [2] Sensitivity analysis in Gaussian Bayesian networks using a symbolic-numerical technique
    Castillo, E
    Kjærulff, U
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2003, 79 (02) : 139 - 148
  • [3] Sensitivity to evidence in Gaussian Bayesian networks using mutual information
    Angel Gomez-Villegas, Miguel
    Main, Paloma
    Viviani, Paola
    INFORMATION SCIENCES, 2014, 275 : 115 - 126
  • [4] Sensitivity to hyperprior parameters in Gaussian Bayesian networks
    Gomez-Villegas, M. A.
    Main, P.
    Navarro, H.
    Susi, R.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 124 : 214 - 225
  • [5] Symbolic propagation and sensitivity analysis in Gaussian Bayesian networks with application to damage assessment
    Castillo, E
    Gutierrez, JM
    Hadi, AS
    Solares, C
    ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1997, 11 (02): : 173 - 181
  • [6] Bayesian prior robustness using general φ-divergence measure
    Harrouche, Lyasmine
    Fellag, Hocine
    Atil, Lynda
    STATISTICAL PAPERS, 2025, 66 (01)
  • [7] Sensitivity analysis in Bayesian networks
    Jensen, FV
    Aldenryd, SH
    Jensen, KB
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING AND UNCERTAINTY, 1995, 946 : 243 - 250
  • [8] Using Bayesian Networks for Sensitivity Analysis of Complex Biogeochemical Models
    Dai, Heng
    Chen, Xingyuan
    Ye, Ming
    Song, Xuehang
    Hammond, Glenn
    Hu, Bill
    Zachara, John M.
    WATER RESOURCES RESEARCH, 2019, 55 (04) : 3541 - 3555
  • [9] Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator
    Chang, Eugene T. Y.
    Strong, Mark
    Clayton, Richard H.
    PLOS ONE, 2015, 10 (06):
  • [10] A Quality Measure Method Using Gaussian Mixture Models and Divergence Measure for Speaker Identification
    Zheng, Rong
    Zhang, Shuwu
    Xu, Bo
    INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, VOLS 1-5, 2006, : 2094 - 2097