Bell Inequalities Tailored to Maximally Entangled States

被引:54
|
作者
Salavrakos, Alexia [1 ]
Augusiak, Remigiusz [2 ]
Tura, Jordi [1 ,3 ]
Wittek, Peter [1 ,4 ]
Acin, Antonio [1 ,5 ]
Pironio, Stefano [6 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Polish Acad Sci, Ctr Theoret Phys, Aleja Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[4] Univ Boras, Allegatan 1, S-50190 Boras, Sweden
[5] ICREA Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain
[6] ULB, Lab Informat Quant, CP 224, B-1050 Brussels, Belgium
关键词
QUANTUM CORRELATIONS; NONLOCALITY; PRINCIPLE;
D O I
10.1103/PhysRevLett.119.040402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bell inequalities have traditionally been used to demonstrate that quantum theory is nonlocal, in the sense that there exist correlations generated from composite quantum states that cannot be explained by means of local hidden variables. With the advent of device-independent quantum information protocols, Bell inequalities have gained an additional role as certificates of relevant quantum properties. In this work, we consider the problem of designing Bell inequalities that are tailored to detect maximally entangled states. We introduce a class of Bell inequalities valid for an arbitrary number of measurements and results, derive analytically their tight classical, nonsignaling, and quantum bounds and prove that the latter is attained by maximally entangled states. Our inequalities can therefore find an application in device-independent protocols requiring maximally entangled states.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On the preservers of maximally entangled states
    Grossmann, Ben W.
    Woerdeman, Hugo J.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 583 : 171 - 194
  • [22] Distinguishability of maximally entangled states
    Ghosh, S
    Kar, G
    Roy, A
    Sarkar, D
    [J]. PHYSICAL REVIEW A, 2004, 70 (02): : 022304 - 1
  • [23] Maximally entangled states and fully entangled fraction
    Zhao, Ming-Jing
    [J]. PHYSICAL REVIEW A, 2015, 91 (01):
  • [24] MIXED MAXIMALLY ENTANGLED STATES
    Li, Z. G.
    Zhao, M. J.
    Fei, S. M.
    Fan, H.
    Liu, W. M.
    [J]. QUANTUM INFORMATION & COMPUTATION, 2012, 12 (1-2) : 63 - 73
  • [25] Preservers of maximally entangled states
    Poon, Edward
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 : 122 - 144
  • [26] Planar maximally entangled states
    Doroudiani, Mehregan
    Karimipour, Vahid
    [J]. PHYSICAL REVIEW A, 2020, 102 (01)
  • [27] Maximally multipartite entangled states
    Facchi, Paolo
    Florio, Giuseppe
    Parisi, Giorgio
    Pascazio, Saverio
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [28] Maximally entangled state and Bell's inequality in qubits
    Chu, Su-Kuan
    Ma, Chen-Te
    Miao, Rong-Xin
    Wu, Chih-Hung
    [J]. ANNALS OF PHYSICS, 2018, 395 : 183 - 195
  • [29] Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity
    Huber, Felix
    Eltschka, Christopher
    Siewert, Jens
    Guehne, Otfried
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (17)
  • [30] Optimal Bell tests do not require maximally entangled states -: art. no. 210402
    Acín, A
    Gill, R
    Gisin, N
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (21)