Importance truncation for the in-medium similarity renormalization group

被引:3
|
作者
Hoppe, J. [1 ,2 ]
Tichai, A. [1 ,2 ,3 ]
Heinz, M. [1 ,2 ,3 ]
Hebeler, K. [1 ,2 ,3 ]
Schwenk, A. [1 ,2 ,3 ]
机构
[1] Tech Univ Darmstadt, Dept Phys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
基金
欧洲研究理事会;
关键词
BODY PERTURBATION-THEORY; NUCLEI;
D O I
10.1103/PhysRevC.105.034324
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Ab initio nuclear many-body frameworks require extensive computational resources, especially when targeting heavier nuclei. Importance-truncation (IT) techniques allow one to significantly reduce the dimensionality of the problem by neglecting unimportant contributions to the solution of the many-body problem. In this work, we apply IT methods to the nonperturbative in-medium similarity renormalization group (IMSRG) approach and investigate the induced errors for ground-state energies in different mass regimes based on different nuclear Hamiltonians. We study various importance measures, which define the IT selection, and identify two measures that perform best, resulting in only small errors to the full IMSRG(2) calculations even for sizable compression ratios. The neglected contributions are accounted for in a perturbative way and serve as an estimate of the IT-induced error. Overall we find that the IT-IMSRG(2) performs well across all systems considered, while the largest compression ratios for a given error can be achieved when using soft Hamiltonians and for large single-particle bases.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Deformed in-medium similarity renormalization group
    Yuan, Q.
    Fan, S. Q.
    Hu, B. S.
    Li, J. G.
    Zhang, S.
    Wang, S. M.
    Sun, Z. H.
    Ma, Y. Z.
    Xu, F. R.
    [J]. PHYSICAL REVIEW C, 2022, 105 (06)
  • [2] In-Medium Similarity Renormalization Group For Nuclei
    Tsukiyama, K.
    Bogner, S. K.
    Schwenk, A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (22)
  • [3] The Magnus Expansion and the In-Medium Similarity Renormalization Group
    Morris, T. D.
    Bogner, S. K.
    [J]. FOURTH CONFERENCE ON NUCLEI AND MESOSCOPIC PHYSICS 2014, 2014, 1619
  • [4] Magnus expansion and in-medium similarity renormalization group
    Morris, T. D.
    Parzuchowski, N. M.
    Bogner, S. K.
    [J]. PHYSICAL REVIEW C, 2015, 92 (03):
  • [5] Ab initio in-medium similarity renormalization group
    Hu, Baishan
    Yuan, Qi
    Fan, Siqin
    Sun, Zhonghao
    Xu, Furong
    [J]. CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (09): : 1016 - 1025
  • [6] Nuclear Structure from the In-Medium Similarity Renormalization Group
    Hergert, H.
    Yao, J. M.
    Morris, T. D.
    Parzuchowski, N. M.
    Bogner, S. K.
    Engel, J.
    [J]. 19TH INTERNATIONAL CONFERENCE RECENT PROGRESS IN MANY-BODY THEORIES (RPMBT), 2018, 1041
  • [7] Ab initio electromagnetic observables with the in-medium similarity renormalization group
    Parzuchowski, N. M.
    Stroberg, S. R.
    Navratil, P.
    Hergert, H.
    Bogner, S. K.
    [J]. PHYSICAL REVIEW C, 2017, 96 (03)
  • [8] In-medium similarity renormalization group for open-shell nuclei
    Tsukiyama, K.
    Bogner, S. K.
    Schwenk, A.
    [J]. PHYSICAL REVIEW C, 2012, 85 (06):
  • [9] In-medium similarity renormalization group with three-body operators
    Heinz, M.
    Tichai, A.
    Hoppe, J.
    Hebeler, K.
    Schwenk, A.
    [J]. PHYSICAL REVIEW C, 2021, 103 (04)
  • [10] Combining the in-medium similarity renormalization group with the density matrix renormalization group: Shell structure and information
    Tichai, A.
    Knecht, S.
    Kruppa, A. T.
    Legeza, O.
    Moca, C. P.
    Schwenk, A.
    Werner, M. A.
    Zarand, G.
    [J]. PHYSICS LETTERS B, 2023, 845