Deformed in-medium similarity renormalization group

被引:10
|
作者
Yuan, Q. [1 ,2 ]
Fan, S. Q. [1 ,2 ]
Hu, B. S. [1 ,2 ]
Li, J. G. [1 ,2 ]
Zhang, S. [1 ,2 ]
Wang, S. M. [3 ,4 ,5 ]
Sun, Z. H. [6 ]
Ma, Y. Z. [1 ,2 ]
Xu, F. R. [1 ,2 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[3] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[4] NSFC, Shanghai Res Ctr Theoret Nucl Phys, Shanghai 200438, Peoples R China
[5] Fudan Univ, Shanghai 200438, Peoples R China
[6] Oak Ridge Natl Lab, Phys Div, POB 2009, Oak Ridge, TN 37831 USA
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
BODY PERTURBATION-THEORY; SHELL-MODEL; NUCLEI;
D O I
10.1103/PhysRevC.105.L061303
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In the m-scheme Hartree-Fock (HF) basis, we have developed an ab initio deformed single-reference in-medium similarity renormalization group (IMSRG) approach for open-shell nuclei. A deformed wave function may be more efficient in describing the deformed nucleus. The broken rotational symmetry can be restored using the angular momentum projection. However, a full angular momentum projection at the IMSRG level is still a challenge in both theory itself and computation. The angular momentum restoration mainly recaptures the static correlations, and in the present work we estimate the angular momentum projection effect by projecting the HF state as a leading-order approximation. As a test ground, we have calculated the deformed Be-8,Be-10 isotopes with the optimized chiral interaction NNLOopt. The results are benchmarked with the no-core shell model and valence-space IMSRG calculations. Then we systematically investigate the ground-state energies and charge radii of even-even nuclei from light beryllium to medium-mass magnesium isotopes. The calculated energies are extrapolated to infinite basis space by an exponential form, and compared with extrapolated valence-space IMSRG results and experimental data.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] In-Medium Similarity Renormalization Group For Nuclei
    Tsukiyama, K.
    Bogner, S. K.
    Schwenk, A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (22)
  • [2] The Magnus Expansion and the In-Medium Similarity Renormalization Group
    Morris, T. D.
    Bogner, S. K.
    [J]. FOURTH CONFERENCE ON NUCLEI AND MESOSCOPIC PHYSICS 2014, 2014, 1619
  • [3] Importance truncation for the in-medium similarity renormalization group
    Hoppe, J.
    Tichai, A.
    Heinz, M.
    Hebeler, K.
    Schwenk, A.
    [J]. PHYSICAL REVIEW C, 2022, 105 (03)
  • [4] Magnus expansion and in-medium similarity renormalization group
    Morris, T. D.
    Parzuchowski, N. M.
    Bogner, S. K.
    [J]. PHYSICAL REVIEW C, 2015, 92 (03):
  • [5] Ab initio in-medium similarity renormalization group
    Hu, Baishan
    Yuan, Qi
    Fan, Siqin
    Sun, Zhonghao
    Xu, Furong
    [J]. CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (09): : 1016 - 1025
  • [6] Nuclear Structure from the In-Medium Similarity Renormalization Group
    Hergert, H.
    Yao, J. M.
    Morris, T. D.
    Parzuchowski, N. M.
    Bogner, S. K.
    Engel, J.
    [J]. 19TH INTERNATIONAL CONFERENCE RECENT PROGRESS IN MANY-BODY THEORIES (RPMBT), 2018, 1041
  • [7] Ab initio electromagnetic observables with the in-medium similarity renormalization group
    Parzuchowski, N. M.
    Stroberg, S. R.
    Navratil, P.
    Hergert, H.
    Bogner, S. K.
    [J]. PHYSICAL REVIEW C, 2017, 96 (03)
  • [8] In-medium similarity renormalization group for open-shell nuclei
    Tsukiyama, K.
    Bogner, S. K.
    Schwenk, A.
    [J]. PHYSICAL REVIEW C, 2012, 85 (06):
  • [9] In-medium similarity renormalization group with three-body operators
    Heinz, M.
    Tichai, A.
    Hoppe, J.
    Hebeler, K.
    Schwenk, A.
    [J]. PHYSICAL REVIEW C, 2021, 103 (04)
  • [10] Combining the in-medium similarity renormalization group with the density matrix renormalization group: Shell structure and information
    Tichai, A.
    Knecht, S.
    Kruppa, A. T.
    Legeza, O.
    Moca, C. P.
    Schwenk, A.
    Werner, M. A.
    Zarand, G.
    [J]. PHYSICS LETTERS B, 2023, 845