Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit

被引:106
|
作者
Paulitsch, J. [1 ]
Schenkel, M. [2 ]
Zufrass, Th. [2 ]
Mayrhofer, P. H. [3 ]
Muenz, W.-D. [4 ]
机构
[1] Mat Ctr Leoben Forsch GmbH, A-8700 Leoben, Austria
[2] Systec SVS Vacuum Coating Technol GmbH, D-97753 Karlstadt, Germany
[3] Univ Leoben, Dept Phys Met & Mat Testing, A-8700 Leoben, Austria
[4] Emeritus Sheffield Hallam Univ, A-8160 Weiz, Austria
关键词
TiN; CrN; Hybrid HIPIMS/DCMS; Planetary rotation; Up-scaling; ION SURFACE INTERACTIONS; MECHANICAL-PROPERTIES; COATINGS; MICROSTRUCTURE; BOMBARDMENT; GROWTH; DENSITIES; ADHESION; STEEL;
D O I
10.1016/j.tsf.2010.05.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deposition of complex shaped or round-symmetric samples requires multi-fold substrate rotations during deposition or multiple cathode arrangements. The present paper investigates the influence of the high power impulse magnetron sputtering (HIPIMS) and DC magnetron sputtering (DCMS) process on the mechanical and tribological properties as well as the resulting structure of CrN and TiN coatings using static (0-fold) and dynamic (1-, 2- and 3-fold) depositions in an industrial scale unit. Furthermore, to increase the deposition rate without losing the high ion density in the plasma a hybrid HIPIMS/DCMS deposition technique is investigated. The results demonstrate the advantage of the HIPIMS technique when using multi-fold substrate rotation during deposition as it enables depositions of CrNHIPIMS and TiNHIPIMS coatings with hardness values around 23 and 35 GPa, respectively, compared with around 15 GPa for CrNDCMS and TiNDCMS coatings. Hardness values of 35 GPa for TiNDCMS coatings prepared with substrate rotations could only be obtained when introducing an additional anode or using a multilayered CrNHIPIMS/TiNDCMS base layer as a template. Based on our results we can conclude that especially for up-scaling and multi-fold substrate rotations the HIPIMS process offers an improved performance as compared to DCMS. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:5558 / 5564
页数:7
相关论文
共 50 条
  • [1] AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications
    Aissa, K. Ait
    Achour, A.
    Elmazria, O.
    Simon, Q.
    Elhosni, M.
    Boulet, P.
    Robert, S.
    Djouadi, M. A.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (14)
  • [2] CuO films deposited by superimposed high power impulse and DC magnetron sputtering
    Semenov, V. A.
    Grenadyorov, A. S.
    Oskirko, V. O.
    Zakharov, A. N.
    Rabotkin, S. V.
    Ionov, I. V.
    Solovyev, A. A.
    [J]. 14TH INTERNATIONAL CONFERENCE GAS DISCHARGE PLASMAS AND THEIR APPLICATIONS, 2019, 1393
  • [3] Effects of sputtering power on structure and properties of Ti films deposited by DC magnetron sputtering
    Department of Physics, Key Laboratory for Irradiation Physics and Technology, Sichuan University, Chengdu 610064, China
    不详
    不详
    [J]. Qiangjiguang Yu Lizishu, 2006, 6 (961-964):
  • [4] CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique
    Hovsepian, P. Eh.
    Reinhard, C.
    Ehiasarian, A. P.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2006, 201 (07): : 4105 - 4110
  • [5] Low friction CrN/TiN multilayer coatings prepared by a hybrid high power impulse magnetron sputtering/DC magnetron sputtering deposition technique
    Paulitsch, J.
    Schenkel, M.
    Schintlmeister, A.
    Hutter, H.
    Mayrhofer, P. H.
    [J]. THIN SOLID FILMS, 2010, 518 (19) : 5553 - 5557
  • [6] Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering
    Wu, Wan-Yu
    Chan, Man-Yee
    Hsu, Yu-Hsuan
    Chen, Guan-Zhen
    Liao, Shu-Chuan
    Lee, Cheng-Hung
    Lui, Ping-Wing
    [J]. SURFACE & COATINGS TECHNOLOGY, 2019, 362 : 167 - 175
  • [7] Effect of the degree of high power impulse magnetron sputtering utilisation on the structure and properties of TiN films
    Hovsepian, Papken Eh.
    Sugumaran, Arunprabhu A.
    Purandare, Yashodhan
    Loch, Daniel A. L.
    Ehiasarian, Arutiun P.
    [J]. THIN SOLID FILMS, 2014, 562 : 132 - 139
  • [8] Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures
    Aissa, K. Ait
    Achour, A.
    Camus, J.
    Le Brizoual, L.
    Jouan, P-Y.
    Djouadi, M-A.
    [J]. THIN SOLID FILMS, 2014, 550 : 264 - 267
  • [9] Textured hexagonal and cubic phases of AlN films deposited on Si (100) by DC magnetron sputtering and high power impulse magnetron sputtering
    Riah, B.
    Ayad, A.
    Camus, J.
    Rammal, M.
    Boukari, F.
    Chekour, L.
    Djouadi, M. A.
    Rouag, N.
    [J]. THIN SOLID FILMS, 2018, 655 : 34 - 40
  • [10] Structure and properties of Ti films deposited by dc magnetron sputtering, pulsed dc magnetron sputtering and cathodic arc evaporation
    Yang, Chao
    Jiang, Bailing
    Liu, Zheng
    Hao, Juan
    Feng, Lin
    [J]. SURFACE & COATINGS TECHNOLOGY, 2016, 304 : 51 - 56