Bootstrapping the empirical distribution of a stationary process with change-point

被引:3
|
作者
El Ktaibi, Farid [1 ]
Ivanoff, B. Gail [2 ]
机构
[1] Zayed Univ, Dept Math & Stat, POB 144534, Abu Dhabi, U Arab Emirates
[2] Univ Ottawa, Dept Math & Stat, 585 King Edward, Ottawa, ON K1N 6N5, Canada
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Time series; change-point; sequential empirical process; moving block bootstrap; causal linear process; BLOCKWISE BOOTSTRAP;
D O I
10.1214/19-EJS1613
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When detecting a change-point in the marginal distribution of a stationary time series, bootstrap techniques are required to determine critical values for the tests when the pre-change distribution is unknown. In this paper, we propose a sequential moving block bootstrap and demonstrate its validity under a converging alternative. Furthermore, we demonstrate that power is still achieved by the bootstrap under a non-converging alternative. We follow the approach taken by Peligrad in [14], and avoid assumptions of mixing, association or near epoch dependence. These results are applied to a linear process and are shown to be valid under very mild conditions on the existence of any moment of the innovations and a corresponding condition of summability of the coefficients.
引用
收藏
页码:3572 / 3612
页数:41
相关论文
共 50 条
  • [21] Asymptotic distribution of the jump change-point estimator
    Changchun Tan
    Huifang Niu
    Baiqi Miao
    [J]. Chinese Annals of Mathematics, Series B, 2012, 33 : 429 - 436
  • [22] Nonparametric sequential change-point detection for multivariate time series based on empirical distribution functions
    Kojadinovic, Ivan
    Verdier, Ghislain
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 773 - 829
  • [23] Empirical likelihood test in a posteriori change-point nonlinear model
    Ciuperca, Gabriela
    Salloum, Zahraa
    [J]. METRIKA, 2015, 78 (08) : 919 - 952
  • [24] Bayesian analysis of compound Poisson process with change-point
    Wang, Pingping
    Tang, Yincai
    Xu, Ancha
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2019, 16 (03): : 297 - 317
  • [25] ASYMPTOTIC INFERENCE FOR A CHANGE-POINT POISSON-PROCESS
    AKMAN, VE
    RAFTERY, AE
    [J]. ANNALS OF STATISTICS, 1986, 14 (04): : 1583 - 1590
  • [26] Use of Change-Point Analysis for Process Monitoring and Control
    Gavit, Patrick
    Baddour, Yasser
    Tholmer, Rebecca
    [J]. BIOPHARM INTERNATIONAL, 2009, 22 (08) : 46 - +
  • [27] Empirical likelihood test in a posteriori change-point nonlinear model
    Gabriela Ciuperca
    Zahraa Salloum
    [J]. Metrika, 2015, 78 : 919 - 952
  • [28] Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits
    Besson, Lilian
    Kaufmann, Emilie
    Maillard, Odalric-Ambrym
    Seznec, Julien
    [J]. Journal of Machine Learning Research, 2022, 23
  • [29] Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits
    Besson, Lilian
    Kaufmann, Emilie
    Maillard, Odalric-Ambrym
    Seznec, Julien
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [30] Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis
    Blythe, Duncan A. J.
    von Buenau, Paul
    Meinecke, Frank C.
    Mueller, Klaus-Robert
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (04) : 631 - 643