Structure functions in nocturnal atmospheric boundary layer turbulence

被引:4
|
作者
Kit, Eliezer [1 ,2 ]
Barami, Eli [3 ,4 ]
Fernando, H. J. S. [2 ,5 ]
机构
[1] Tel Aviv Univ, Sch Mech Engn, IL-69978 Tel Aviv, Israel
[2] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46530 USA
[3] Ben Gurion Univ Negev, Dept Mech Engn, IL-84105 Beer Sheva, Israel
[4] Soreq Nucl Res Ctr, IL-8180000 Yavne, Israel
[5] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46530 USA
基金
以色列科学基金会;
关键词
EXTENDED SELF-SIMILARITY; FULLY-DEVELOPED TURBULENCE; SMALL-SCALE STRUCTURE; REYNOLDS-NUMBER; INTERMITTENCY; ANISOTROPY; LAWS; DISSIPATION; EVOLUTION; RANGE;
D O I
10.1103/PhysRevFluids.6.084605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper analyzes odd and even higher-order moments for longitudinal velocity increment Delta u(x, r), where x is the longitudinal coordinate and r is the separation distance, based on the canonical and a modified normalization for skewness of longitudinal velocity derivative partial derivative u/partial derivative x. Two types of data were used, stably stratified turbulence data from the nocturnal atmospheric boundary layer taken during the Mountain Terrain Atmospheric Modeling and Observations field campaign and from the direct numerical simulation of homogeneous and isotropic turbulence in a box at four Reynolds numbers and four different grid resolutions. Third moment data normalized by the same moment of third order for modulus vertical bar Delta u(x, r)vertical bar representing modified skewness of the velocity increment showed a better collapse at all Reynolds numbers in the inertial and viscous subranges than canonical normalized skewness with normalization parameter <(Delta u(x, r))(2)>(3/2), where <..> represents the ensemble average. The analysis also considered odd pth-order classical structure functions <Delta u(x, r)(P)> with Kolmogorov-theory based normalization <Delta u(x, r)(P)>/(epsilon r)(P/3) for the inertial subrange, where s is the rate of dissipation, and a modulus-based structure function <vertical bar Delta u(x, r)vertical bar(P)>/(epsilon r)(P/3). Both types of structure functions of order p = 1-6 were computed using different normalizations, and corresponding scaling exponents were assessed for the inertial and viscous subranges. Scaling for modulus-based structure functions in the viscous subrange was identified as <vertical bar Delta u(x, r)vertical bar(P)> proportional to r(P.(5/6)). In the viscous subrange, the velocity increment varied linearly with r for the classical third moment <Delta u(x, r)(3)> proportional to r(3) based on the velocity increment while the classical fifth moment <Delta u(x, r)(5)> did not provide any meaningful scaling exponent. A plausible qualitative explanation linking these effects to anisotropy of nocturnal stratified turbulence is proposed.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Observations of flow and turbulence in the nocturnal boundary layer over a slope
    Monti, P
    Fernando, HJS
    Princevac, M
    Chan, WC
    Kowalewski, TA
    Pardyjak, ER
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2002, 59 (17) : 2513 - 2534
  • [32] The Minimum Wind Speed for Sustainable Turbulence in the Nocturnal Boundary Layer
    Van de Wiel, B. J. H.
    Moene, A. F.
    Jonker, H. J. J.
    Baas, P.
    Basu, S.
    Donda, J. M. M.
    Sun, J.
    Holtslag, A. A. M.
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2012, 69 (11) : 3116 - 3127
  • [33] Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer
    Barbano, Francesco
    Brogno, Luigi
    Tampieri, Francesco
    Di Sabatino, Silvana
    [J]. BOUNDARY-LAYER METEOROLOGY, 2022, 183 (01) : 35 - 65
  • [34] A test of the dynamical nonstationarity in atmospheric boundary layer turbulence
    Li, M
    Jiang, WM
    Li, X
    Pu, YF
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2005, 48 (03): : 493 - 500
  • [35] A nonlinear dynamical model for atmospheric boundary layer turbulence
    Zheng, Zuguang
    Liu, Shida
    [J]. CHAOS, 1993, 3 (03) : 305 - 312
  • [36] STRANGE ATTRACTORS IN ATMOSPHERIC BOUNDARY-LAYER TURBULENCE
    POVEDAJARAMILLO, G
    PUENTE, CE
    [J]. BOUNDARY-LAYER METEOROLOGY, 1993, 64 (1-2) : 175 - 197
  • [37] Finescale Clusterization Intermittency of Turbulence in the Atmospheric Boundary Layer
    Liu, Lei
    Hu, Fei
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (07) : 2375 - 2392
  • [38] Measuring the turbulence profile in the lower atmospheric boundary layer
    van Iersel, Miranda
    Paulson, Daniel A.
    Wu, Chensheng
    Ferlic, Nathaniel A.
    Rzasa, John R.
    Davis, Christopher C.
    Walker, Michael
    Bowden, Mary
    Spychalsky, Jonathan
    Titus, Franklin
    [J]. APPLIED OPTICS, 2019, 58 (25) : 6934 - 6941
  • [39] VARIABILITY OF TURBULENCE SPECTRA IN ATMOSPHERIC BOUNDARY-LAYER
    BEZVERKHNIY, WA
    GURVICH, AS
    KUKHARETS, VP
    [J]. IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1986, 22 (07): : 675 - 681
  • [40] TURBULENCE IN A CONVECTIVE MARINE ATMOSPHERIC BOUNDARY-LAYER
    CHOU, SH
    ATLAS, D
    YEH, EN
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 1986, 43 (06) : 547 - 564