Unitary superalgebras with graded involution or superinvolution of polynomial growth

被引:5
|
作者
Costa, W. D. S. [1 ]
Ioppolo, A. [2 ]
dos Santos, R. B. [1 ]
Vieira, A. C. [1 ]
机构
[1] Univ Fed Minas Gerais, ICEx, Ave Antonio Carlos 6627, BR-31123970 Belo Horizonte, MG, Brazil
[2] Univ Estadual Campinas, IMECC, Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Polynomial identity; Graded involution; Superinvolution; Polynomial growth; Codimension; CODIMENSION GROWTH; ALGEBRAS; IDENTITIES; VARIETIES;
D O I
10.1016/j.jpaa.2021.106666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study associative unitary superalgebras with graded involution or superinvolution having polynomial growth of the codimension sequence. The first goal is to prove that, for this kind of algebras, the codimension sequence is a polynomial with rational coefficients. Then we shall construct several superalgebras with graded involution or superinvolution realizing the smallest and the largest value of the leading term of such a polynomial. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Graded polynomial identities for matrices with the transpose involution
    Haile, Darrell
    Natapov, Michael
    JOURNAL OF ALGEBRA, 2016, 464 : 175 - 197
  • [22] Characterizations of *-superalgebras of polynomial growth
    Goncalves Fonseca, Luis Felipe
    dos Santos, Rafael Bezerra
    Vieira, Ana Cristina
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (07): : 1379 - 1389
  • [23] Polynomial identities on superalgebras and almost polynomial growth
    Giambruno, A
    Mishchenko, S
    Zaicev, M
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) : 3787 - 3800
  • [24] Minimal affine varieties of superalgebras with superinvolution: A characterization
    Di Vincenzo, Onofrio M.
    Nardozza, Vincenzo C.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 698 : 514 - 536
  • [25] The basis of the graded polynomial identities for superalgebras of triangular matrices
    DiVincenzo, OM
    Drensky, V
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (02) : 727 - 735
  • [26] Varieties of Lie superalgebras of polynomial growth
    Zaitsev, MV
    Mishchenko, SP
    RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (02) : 432 - 433
  • [27] Identities of *-superalgebras and almost polynomial growth
    Giambruno, Antonio
    dos Santos, Rafael Bezerra
    Vieira, Ana Cristina
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03): : 484 - 501
  • [28] Varieties of superalgebras of almost polynomial growth
    La Mattina, Daniela
    JOURNAL OF ALGEBRA, 2011, 336 (01) : 209 - 226
  • [29] On superalgebras with pseudoautomorphism of polynomial codimension growth
    Giordani, Ginevra
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (10) : 4093 - 4104
  • [30] Polynomial identities on superalgebras and exponential growth
    Benanti, F
    Giambruno, A
    Pipitone, M
    JOURNAL OF ALGEBRA, 2003, 269 (02) : 422 - 438