On the richness of the collection of subtrees in random binary search trees

被引:6
|
作者
Devroye, L [1 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
关键词
probabilistic analysis; random binary search trees; random permutation; subtrees; computational complexity;
D O I
10.1016/S0020-0190(97)00206-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to settle two conjectures by Flajolet, Gourdon and Martinet (1996). We confirm that in a random binary tree on n nodes, the expected number of different subtrees grows indeed as Theta (n/log n). Secondly, if K is the largest integer such that all possible shapes of subtrees of cardinality less than or equal to K occur in a random binary search tree, then we show that K similar to log n/log log n in probability. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条
  • [41] Asymptotic distribution of two-protected nodes in random binary search trees
    Mahmoud, Hosam M.
    Ward, Mark Daniel
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2218 - 2222
  • [42] Optimal binary search trees
    Nagaraj, SV
    [J]. THEORETICAL COMPUTER SCIENCE, 1997, 188 (1-2) : 1 - 44
  • [43] Randomized binary search trees
    Martinez, C
    Roura, S
    [J]. JOURNAL OF THE ACM, 1998, 45 (02) : 288 - 323
  • [44] Reductions in binary search trees
    Sánchez-Couso, JR
    Fernández-Camacho, MI
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 355 (03) : 327 - 353
  • [45] Skewed binary search trees
    Brodal, Gerth Stolting
    Moruz, Gabriel
    [J]. ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 708 - 719
  • [46] The algebra of binary search trees
    Hivert, F
    Novelli, JC
    Thibon, JY
    [J]. THEORETICAL COMPUTER SCIENCE, 2005, 339 (01) : 129 - 165
  • [47] The Geometry of Binary Search Trees
    Demaine, Erik D.
    Harmon, Dion
    Iacono, John
    Kane, Daniel
    Patrascu, Mihai
    [J]. PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 496 - +
  • [48] ON BINARY SEARCH-TREES
    DEPRISCO, R
    DESANTIS, A
    [J]. INFORMATION PROCESSING LETTERS, 1993, 45 (05) : 249 - 253
  • [49] ON THE SILHOUETTE OF BINARY SEARCH TREES
    Gruebel, Rudolf
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (05): : 1781 - 1802
  • [50] The profile of binary search trees
    Chauvin, B
    Drmota, M
    Jabbour-Hattab, J
    [J]. ANNALS OF APPLIED PROBABILITY, 2001, 11 (04): : 1042 - 1062