On the richness of the collection of subtrees in random binary search trees

被引:6
|
作者
Devroye, L [1 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
关键词
probabilistic analysis; random binary search trees; random permutation; subtrees; computational complexity;
D O I
10.1016/S0020-0190(97)00206-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to settle two conjectures by Flajolet, Gourdon and Martinet (1996). We confirm that in a random binary tree on n nodes, the expected number of different subtrees grows indeed as Theta (n/log n). Secondly, if K is the largest integer such that all possible shapes of subtrees of cardinality less than or equal to K occur in a random binary search tree, then we show that K similar to log n/log log n in probability. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条
  • [1] Limit laws for sums of functions of subtrees of random binary search trees
    Devroye, L
    [J]. SIAM JOURNAL ON COMPUTING, 2003, 32 (01) : 152 - 171
  • [2] Patterns in random binary search trees
    Flajolet, P
    Gourdon, X
    Martinez, C
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1997, 11 (03) : 223 - 244
  • [3] Binary trees with the largest number of subtrees
    Szekely, L. A.
    Wang, Hua
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (03) : 374 - 385
  • [4] Distances and finger search in random binary search trees
    Devroye, L
    Neininger, R
    [J]. SIAM JOURNAL ON COMPUTING, 2004, 33 (03) : 647 - 658
  • [5] Distinct Fringe Subtrees in Random Trees
    Seelbach Benkner, Louisa
    Wagner, Stephan
    [J]. ALGORITHMICA, 2022, 84 (12) : 3686 - 3728
  • [6] Distinct Fringe Subtrees in Random Trees
    Louisa Seelbach Benkner
    Stephan Wagner
    [J]. Algorithmica, 2022, 84 : 3686 - 3728
  • [7] Profiles of Random Trees: Limit Theorems for Random Recursive Trees and Binary Search Trees
    Michael Fuchs
    Hsien-Kuei Hwang
    Ralph Neininger
    [J]. Algorithmica, 2006, 46 : 367 - 407
  • [8] Profiles of random trees: Correlation and width of random recursive trees and binary search trees
    Drmota, M
    Hwang, HK
    [J]. ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) : 321 - 341
  • [9] Profiles of random trees: Limit theorems for random recursive trees and binary search trees
    Fuchs, Michael
    Hwang, Hsien-Kuei
    Neininger, Ralph
    [J]. ALGORITHMICA, 2006, 46 (3-4) : 367 - 407
  • [10] On Weighted Depths in Random Binary Search Trees
    Aguech, Rafik
    Amri, Anis
    Sulzbach, Henning
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 1929 - 1951