Multiple nitrogen reservoirs in a protoplanetary disk at the epoch of comet and giant planet formation

被引:24
|
作者
Hily-Blant, P. [1 ]
de Souza, V. Magalhaes [2 ]
Kastner, J. [3 ,4 ]
Forveille, T. [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
[2] IRAM, 300 Rue Piscine, Grenoble, France
[3] Rochester Inst Technol, Sch Phys & Astron, Chester F Carlson Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA
[4] Rochester Inst Technol, Lab Multiwavelength Astrophys, 54 Lomb Mem Dr, Rochester, NY 14623 USA
关键词
comets: general; protoplanetary disks; SOLAR-SYSTEM;
D O I
10.1051/0004-6361/201936750
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The isotopic ratio of nitrogen measured in primitive Solar System bodies shows a broad range of values, the origin of which remains unknown. One key question is whether these isotopic reservoirs of nitrogen predate the comet formation stage or are posterior to it. Another central question is elucidating the processes that can produce the observed variations in the N-14/N-15 isotopic ratio. Disks that orbit pre-main-sequence (T Tauri) stars provide unique opportunities for observing the chemical content of analogs of the protosolar nebula and therefore for building a comprehensive scenario that can explain the origin of nitrogen in the Solar System and in planet-forming disks. With ALMA, it has become possible to measure isotopic ratios of nitrogen-bearing species in such environments. We present spectrally and spatially resolved observations of the hyperfine structure of the 4-3 rotational transition of HCN and its main isotopologs (HCN)-C-13 and (HCN)-N-15 in the disk orbiting the 8 Myr old T Tauri star TW Hya. The sensitivity allows directly measuring the HCN/(HCN)-C-13 and HCN/(HCN)-N-15 abundance ratios with minimal assumptions. Averaged spatially over the disks, the ratios are 86 +/- 4 and 223 +/- 21, respectively. The latter value is significantly lower than the CN/(CN)-N-15 ratio of 323 +/- 30 in this disk and thus provides the first evidence that two isotopic reservoirs of nitrogen are present in a disk at the stage of giant planet and comet formation. Furthermore, we find clear evidence for an increase in the ratio of HCN to (HCN)-N-15 with radius. The ratio in the outer disk, at 45 au, is 339 +/- 28, in excellent agreement with direct measurements in the local interstellar medium, and with the bulk nitrogen isotopic ratio predicted from galactic evolution calculations. In the comet formation region at r = 20 au, the ratio is a factor approximate to 3 lower, 121 +/- 11. This radial increase qualitatively agrees with the scenario in which selective photodissociation of N-2 is the dominant fractionation process. However, our isotopic ratios and kinetic temperature of the HCN-emitting layers quantitatively disagree with models of nitrogen chemistry in disks.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Flux-limited diffusion approximation models of giant planet formation by disk instability
    Boss, Alan P.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 677 (01): : 607 - 615
  • [42] A Potential Site for Wide-orbit Giant Planet Formation in the IM Lup Disk
    Bosman, Arthur D.
    Appelgren, Johan
    Bergin, Edwin A.
    Lambrechts, Michiel
    Johansen, Anders
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2023, 944 (02)
  • [43] Gap formation in a self-gravitating disk and the associated migration of the embedded giant planet
    Zhang, Hui
    Liu, Hui-Gen
    Zhou, Ji-Lin
    Wittenmyer, Robert A.
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2014, 14 (04) : 433 - 455
  • [44] Debris disks as signposts of terrestrial planet formation II. Dependence of exoplanet architectures on giant planet and disk properties
    Raymond, S. N.
    Armitage, P. J.
    Moro-Martin, A.
    Booth, M.
    Wyatt, M. C.
    Armstrong, J. C.
    Mandell, A. M.
    Selsis, F.
    West, A. A.
    [J]. ASTRONOMY & ASTROPHYSICS, 2012, 541
  • [45] Study of type II migration under the framework of the disk instability model for giant planet formation
    Yang, Jingxi
    Jin, Liping
    [J]. ASTRONOMY & ASTROPHYSICS, 2024, 685
  • [46] DISCOVERY OF A COMPANION CANDIDATE IN THE HD 169142 TRANSITION DISK AND THE POSSIBILITY OF MULTIPLE PLANET FORMATION
    Reggiani, Maddalena
    Quanz, Sascha P.
    Meyer, Michael R.
    Pueyo, Laurent
    Absil, Olivier
    Amara, Adam
    Anglada, Guillem
    Avenhaus, Henning
    Girard, Julien H.
    Carrasco Gonzalez, Carlos
    Graham, James
    Mawet, Dimitri
    Meru, Farzana
    Milli, Julien
    Osorio, Mayra
    Wolff, Schuyler
    Torrelles, Jose-Maria
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2014, 792 (01)
  • [47] Disk Dissipation, Giant Planet Formation, and Star Formation Rate Fluctuations in the 3 Myr History of Gould's Belt
    Liu, Mingchao
    He, Jinhua
    Ge, Jixing
    Liu, Tie
    Tang, Yuping
    Li, Xuzhi
    [J]. ASTROPHYSICAL JOURNAL, 2023, 943 (01):
  • [48] 880 μm IMAGING OF A TRANSITIONAL DISK IN UPPER SCORPIUS: HOLDOVER FROM THE ERA OF GIANT PLANET FORMATION?
    Mathews, Geoffrey S.
    Williams, Jonathan P.
    Menard, Francois
    [J]. ASTROPHYSICAL JOURNAL, 2012, 753 (01):
  • [49] Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging
    Maire, A. -L.
    Stolker, T.
    Messina, S.
    Mueller, A.
    Biller, B. A.
    Currie, T.
    Dominik, C.
    Grady, C. A.
    Boccaletti, A.
    Bonnefoy, M.
    Chauvin, G.
    Galicher, R.
    Millward, M.
    Pohl, A.
    Brandner, W.
    Henning, T.
    Lagrange, A. -M.
    Langlois, M.
    Meyer, M. R.
    Quanz, S. P.
    Vigan, A.
    Zurlo, A.
    van Boekel, R.
    Buenzli, E.
    Buey, T.
    Desidera, S.
    Feldt, M.
    Fusco, T.
    Ginski, C.
    Giro, E.
    Gratton, R.
    Hubin, N.
    Lannier, J.
    Le Mignant, D.
    Mesa, D.
    Peretti, S.
    Perrot, C.
    Ramos, J. R.
    Salter, G.
    Samland, M.
    Sissa, E.
    Stadler, E.
    Thalmann, C.
    Udry, S.
    Weber, L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2017, 601
  • [50] Close-in giant-planet formation via in-situ gas accretion and their natal disk properties
    Hasegawa, Yasuhiro
    Yu, Tze Yeung Mathew
    Hansen, Bradley M. S.
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 629