Distributed sampled-data control of Kuramoto-Sivashinsky equation

被引:57
|
作者
Kang, Wen [1 ,2 ]
Fridman, Emilia [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing, Peoples R China
[2] Tel Aviv Univ, Sch Elect Engn, Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Sampled-data control; Kuramoto-Sivashinsky equation; Linear matrix inequalities; NONLINEAR DISSIPATIVE SYSTEMS; FINITE DETERMINING PARAMETERS; FEEDBACK-CONTROL; STABILITY; STABILIZATION;
D O I
10.1016/j.automatica.2018.06.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper is devoted to distributed sampled-data control of nonlinear PDE system governed by 1-D Kuramoto-Sivashinsky equation. It is assumed that N sensors provide sampled in time spatially distributed (either point or averaged) measurements of the state over N sampling spatial intervals. Locally stabilizing sampled-data controllers are designed that are applied through distributed in space shape functions and zero-order hold devices. Given upper bounds on the sampling intervals in time and in space, sufficient conditions ensuring regional exponential stability of the closed-loop system are established in terms of Linear Matrix Inequalities (LMIs) by using the time-delay approach to sampled-data control and Lyapunov-Krasovskii method. As it happened in the case of diffusion equation, the descriptor method appeared to be an efficient tool for the stability analysis of the sampled-data Kuramoto-Sivashinsky equation. An estimate on the domain of attraction is also given. A numerical example demonstrates the efficiency of the results. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:514 / 524
页数:11
相关论文
共 50 条
  • [21] Dynamical correlations for the kuramoto-sivashinsky equation
    Kobayashi, Miki U.
    Fujisaka, Hirokazu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (06): : 1043 - 1052
  • [22] INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION
    FOIAS, C
    NICOLAENKO, B
    SELL, GR
    TEMAM, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (06): : 285 - 288
  • [23] New bounds for the Kuramoto-Sivashinsky equation
    Giacomelli, L
    Otto, F
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) : 297 - 318
  • [24] A note on the Kuramoto-Sivashinsky equation with discontinuity
    D'Ambrosio, Lorenzo
    Gallo, Marco
    Pugliese, Alessandro
    MATHEMATICS IN ENGINEERING, 2021, 3 (05):
  • [25] Generalized solutions to the Kuramoto-Sivashinsky equation
    Biagioni, HA
    Iorio, RJ
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) : 1 - 8
  • [26] Computational study of the Kuramoto-Sivashinsky equation
    Smyrlis, YS
    Papageorgiou, DT
    ADVANCES IN MULTI-FLUID FLOWS, 1996, : 426 - 432
  • [27] Scaling properties of the Kuramoto-Sivashinsky equation
    Li, J
    Sander, LM
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 507 - 514
  • [28] Dynamical bifurcation for the Kuramoto-Sivashinsky equation
    Zhang, Yindi
    Song, Lingyu
    Axia, Wang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1155 - 1163
  • [29] Optimal bounds on the Kuramoto-Sivashinsky equation
    Otto, Felix
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) : 2188 - 2245
  • [30] A PARTICLE MODEL FOR THE KURAMOTO-SIVASHINSKY EQUATION
    ROST, M
    KRUG, J
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (01) : 1 - 13