Optimal destabilizing centers and equivariant K-stability

被引:27
|
作者
Zhuang, Ziquan [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1007/s00222-021-01046-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an algebraic proof of the equivalence of equivariant K-semistability (resp. equivariant K-polystability) with geometric K-semistability (resp. geometric K-polystability). Along the way we also prove the existence and uniqueness of minimal optimal destabilizing centers on K-unstable log Fano pairs.
引用
收藏
页码:195 / 223
页数:29
相关论文
共 50 条
  • [1] Optimal destabilizing centers and equivariant K-stability
    Ziquan Zhuang
    Inventiones mathematicae, 2021, 226 : 195 - 223
  • [2] A note on equivariant K-stability
    Zhu, Ziwen
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (01) : 116 - 134
  • [3] A note on equivariant K-stability
    Ziwen Zhu
    European Journal of Mathematics, 2021, 7 : 116 - 134
  • [4] ALGEBRAICITY OF THE METRIC TANGENT CONES AND EQUIVARIANT K-STABILITY
    Li, Chi
    Wang, Xiaowei
    Xu, Chenyang
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (04) : 1175 - 1214
  • [5] Equivariant K-stability under finite group action
    Liu, Yuchen
    Zhu, Ziwen
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (01)
  • [6] K-stability and parabolic stability
    Rollin, Yann
    ADVANCES IN MATHEMATICS, 2015, 285 : 1741 - 1766
  • [7] K-stability of cubic fourfolds
    Liu, Yuchen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (786): : 55 - 77
  • [8] Thresholds, valuations, and K-stability
    Blum, Harold
    Jonsson, Mattias
    ADVANCES IN MATHEMATICS, 2020, 365
  • [9] K-stability on toric manifolds
    Zhou, Bin
    Zhu, Xiaohua
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3301 - 3307
  • [10] K-stability for Kahler manifolds
    Dervan, Ruadhai
    Ross, Julius
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (03) : 689 - 739