K-stability for Kahler manifolds

被引:30
|
作者
Dervan, Ruadhai [1 ,2 ]
Ross, Julius [1 ]
机构
[1] Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Univ Libre Bruxelles, Franklin Rooseveltlaan 50, B-1050 Brussels, Belgium
基金
英国工程与自然科学研究理事会;
关键词
SCALAR CURVATURE; EINSTEIN METRICS; BLOWING-UP; J-FLOW; ENERGY; OBSTRUCTION; VARIETIES; EXISTENCE; FAMILIES; LIMITS;
D O I
10.4310/MRL.2017.v24.n3.a5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate a notion of K-stability for Kahler manifolds, and prove one direction of the Yau-Tian-Donaldson conjecture in this setting. More precisely, we prove that the Mabuchi functional being bounded below (resp. coercive) implies K-semistability (resp. uniformly K-stable). In particular this shows that the existence of a constant scalar curvature Kahler metric implies K-semistability, and K-stability if one assumes the automorphism group is discrete. We also show how Stoppa's argument holds in the Kahler case, giving a simpler proof of this K-stability statement.
引用
收藏
页码:689 / 739
页数:51
相关论文
共 50 条