Local Polynomial Quantile Regression With Parametric Features

被引:16
|
作者
El Ghouch, Anouar [1 ]
Genton, Marc G. [2 ]
机构
[1] Univ Geneva, Dept Econometr, CH-1211 Geneva 4, Switzerland
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Bias reduction; Local polynomial smoothing; Model misspecification; Robustness; Strong mixing sequence; CROSS-VALIDATION; LEAST-SQUARES; ESTIMATORS; ALGORITHM;
D O I
10.1198/jasa.2009.tm08400
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new approach to conditional quantile function estimation that combines both parametric and nonparametric techniques. At each design point, a global, possibly incorrect, pilot parametric model is locally adjusted through a kernel smoothing fit. The resulting quantile regression estimator behaves like a parametric estimator when the latter is correct and converges to the nonparametric solution as the parametric start deviates from the true underlying model. We give a Bahadur-type representation of the proposed estimator from which consistency and asymptotic normality are derived under an a-mixing assumption. We also propose a practical bandwidth selector based on the plug-in principle and discuss the numerical implementation of the new estimator. Finally, we investigate the performance of the proposed method via simulations and illustrate the methodology with a data example.
引用
收藏
页码:1416 / 1429
页数:14
相关论文
共 50 条
  • [1] Binary quantile regression with local polynomial smoothing
    Chen, Songnian
    Zhang, Hanghui
    [J]. JOURNAL OF ECONOMETRICS, 2015, 189 (01) : 24 - 40
  • [2] Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression
    Kai, Bo
    Li, Runze
    Zou, Hui
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 49 - 69
  • [3] Geographically and Temporally Weighted Quantile Regression Analysis Based on Multibandwidth Local Polynomial
    Wang, Shoufen
    Wang, Shouxia
    Gu, Jianxiang
    [J]. Journal of Geo-Information Science, 2024, 26 (03) : 567 - 590
  • [4] Parametric Quantile Beta Regression Model
    Bourguignon, Marcelo
    Gallardo, Diego I.
    Saulo, Helton
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2024, 92 (01) : 106 - 129
  • [5] Flexible parametric quantile regression model
    Steve Su
    [J]. Statistics and Computing, 2015, 25 : 635 - 650
  • [6] Flexible parametric quantile regression model
    Su, Steve
    [J]. STATISTICS AND COMPUTING, 2015, 25 (03) : 635 - 650
  • [7] Comment on "Local quantile regression"
    Koenker, Roger
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (07) : 1134 - 1135
  • [8] Local linear quantile regression
    Yu, KM
    Jones, MC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 228 - 237
  • [9] Rejoinder: Local quantile regression
    Spokoiny, Vladimir
    Wang, Weining
    Haerdle, Wolfgang Karl
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (07) : 1145 - 1149
  • [10] Improved local quantile regression
    Liu, Xi
    Yu, Keming
    Xu, Qifa
    Tang, Xueqing
    [J]. STATISTICAL MODELLING, 2019, 19 (05) : 501 - 523