Fracture analysis of cellular materials: A strain gradient model

被引:158
|
作者
Chen, JY
Huang, Y [1 ]
Ortiz, M
机构
[1] Michigan Technol Univ, Dept Mech Engn & Engn Mech, Houghton, MI 49931 USA
[2] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
fracture; cellular materials; strain gradient;
D O I
10.1016/S0022-5096(98)00006-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A generalized continuum model is developed for cellular materials based on the equivalence of strain energy at the macro-and microscale. It is rather similar to the strain gradient theory, but has a well-defined characteristic length, namely, the cell size. The continuum model enables one to use powerful analytical methods to investigate fracture of cellular materials. The near-tip asymptotic fields and full-field solutions are obtained for cellular materials with hexagonal, triangular, or square lattice. Using the same strain-energy equivalence at the macro-and microscale, displacements and rotation of discrete cell walls are estimated from the continuum near-tip asymptotic fields. By postulating a maximum-tensile-stress failure criterion of cell walls, the fracture toughness of cellular materials is estimated to be proportional to the thickness h of cell walls and inversely proportional to root L, where L is the cell size. Moreover, the mixed-mode fracture toughness can be simply obtained from the fracture toughness in pure mode I and mode II, once the mode mixity is known. It is established that, with the same mass density, the hexagonal or triangular lattice in a cellular material can provide much higher fracture toughness than the square lattice. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:789 / 828
页数:40
相关论文
共 50 条
  • [21] An implicit computational approach in strain-gradient brittle fracture analysis
    Sessa, Salvatore
    Barchiesi, Emilio
    Placidi, Luca
    MECHANICS RESEARCH COMMUNICATIONS, 2024, 136
  • [22] An a priori error analysis of a porous strain gradient model
    Baldonedo, Jacobo
    Fernandez, Jose R.
    Magana, Antonio
    Quintanilla, Ramon
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (01):
  • [23] Strain and strain gradient engineering in membranes of quantum materials
    Du, Dongxue
    Hu, Jiamian
    Kawasaki, Jason K.
    APPLIED PHYSICS LETTERS, 2023, 122 (17)
  • [24] Numerical analysis of plane cracks in strain-gradient elastic materials
    S. Akarapu
    Hussein M. Zbib
    International Journal of Fracture, 2006, 141 : 403 - 430
  • [25] Analysis of nanoindentation test for polycrystalline materials by modified strain gradient theory
    Jung, Bong-Bu
    Park, Hyun-Chul
    NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2013, 2013, 8691
  • [26] Fracture analysis of flexoelectric double cantilever beams based on the strain gradient theory
    Joseph, R. P.
    Zhang, Chunwei
    Wang, B. L.
    Samali, B.
    COMPOSITE STRUCTURES, 2018, 202 : 1322 - 1329
  • [27] Numerical analysis of plane cracks in strain-gradient elastic materials
    Akarapu, S.
    Zbib, Hussein M.
    INTERNATIONAL JOURNAL OF FRACTURE, 2006, 141 (3-4) : 403 - 430
  • [28] THE THEORETICAL ANALYSIS OF STRESS-STRAIN STATE OF MATERIALS WITH GRADIENT STRUCTURE
    Sarychev, V. D.
    Nevskii, S. A.
    Gromov, V. E.
    MATERIALS PHYSICS AND MECHANICS, 2015, 22 (02): : 157 - 169
  • [29] A micromechanics-based strain gradient damage model for fracture prediction of brittle materials - Part I: Homogenization methodology and constitutive relations
    Li, Jia
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (24) : 3336 - 3345
  • [30] A micromechanics-based strain gradient damage model for fracture prediction of brittle materials - Part II: Damage modeling and numerical simulations
    Li, J.
    Pham, T.
    Abdelmoula, R.
    Song, F.
    Jiang, C. P.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (24) : 3346 - 3358