On normalized convolution to measure curvature features for automatic polyp detection

被引:0
|
作者
van Wijk, C
Truyen, R
van Gelder, RE
van Vliet, LJ
Vos, FM
机构
[1] Delft Univ Technol, Quantitav Imaging Grp, NL-2628 CJ Delft, Netherlands
[2] Philips Med Syst Nederland BV, MIMIT, AD Grp, NL-5680 DA Best, Netherlands
[3] Acad Med Ctr, Dept Radiol, NL-1100 DE Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Early removal of polyps has proven to decrease the incidence of colon cancer. We aim to increase the sensitivity of the screening by automatic detection of polyps. It requires accurate measurement of the colon wall curvature. This paper describes a new method which computes the curvatures using space-variant derivative operators in a strip along the edge of the colon. It optimizes the trade-off between noise reduction and mixing of adjacent image structures. The derivative operators incorporate an applicability function for regularization and interpret the strips as confidence measure; certain inside and uncertain outside. To that purpose the technique of normalized convolution is utilized and adapted to allow a local Taylor expansion of the image signal. A special scheme to compute the confidence values is also presented.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 50 条
  • [31] New features for wireless capsule endoscopy polyp detection
    Souaidi, Meryem
    Charfi, Said
    Ait Abdelouahad, Abdelkaher
    El Ansari, Mohamed
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [32] Is polyp detection rate a suitable surrogate measure for adenoma detection rate in colonoscopy?
    Javanmard-Emamghissi, Hannah
    Perry, Isabel
    Deb, Rahul
    Tierney, Gillian
    BRITISH JOURNAL OF SURGERY, 2021, 108
  • [33] A Comparative Study of Endoscopic Polyp Detection by Textural Features
    Li, Baopu
    Meng, Max Q. -H.
    Hu, Chao
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4671 - 4675
  • [34] Automatic textual description of colorectal polyp features: explainable artificial intelligence
    Thijssen, Ayla
    Schreuder, Ramon-Michel R.
    Fonolla, Roger
    van der Zander, Quirine
    Scheeve, Thom
    Winkens, Bjorn
    Subramaniam, Sharmila
    Bhandari, Pradeep
    de With, Peter
    Masclee, Ad
    van der Sommen, Fons
    Schoon, Erik
    ENDOSCOPY INTERNATIONAL OPEN, 2023, 11 (05) : E513 - E518
  • [35] Correction: Polyp fingerprint: automatic recognition of colorectal polyps’ unique features
    Ana García-Rodríguez
    Jorge Bernal
    F. Javier Sánchez
    Henry Córdova
    Rodrigo Garcés Durán
    Cristina Rodríguez de Miguel
    Gloria Fernández-Esparrach
    Surgical Endoscopy, 2022, 36 : 9484 - 9484
  • [36] An automatic gastric polyp detection technique using deep learning
    Mushtaq, Dania
    Madni, Tahir Mustafa
    Janjua, Uzair Iqbal
    Anwar, Fozia
    Kakakhail, Ahmad
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (03) : 866 - 880
  • [37] Automatic Gastric Polyp Detection by Using Convolutional Neural Networks
    Yu, Ying
    Cao, Chanting
    Wang, Ruilin
    Zhang, Jie
    Gao, Feng
    Sun, Changyin
    Yu, Yao
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (04) : 1079 - 1086
  • [38] Enhancing Automatic Polyp Detection Accuracy Using Fusion Techniques
    El Khatib, Alaa
    Werghi, Naoufel
    Al-Ahmad, Hussain
    2016 IEEE 59TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2016, : 361 - 364
  • [39] Automatic colonic polyp detection using multiobjective evolutionary techniques
    Li, Jiang
    Huang, Adam
    Yao, Jianhua
    Bitter, Ingmar
    Petrick, Nicholas
    Summers, Ronald M.
    Pickhardt, Perry J.
    Choi, J. Richard
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [40] CONVOLUTIONAL NEURAL NETWORK AS A FEATURE EXTRACTOR FOR AUTOMATIC POLYP DETECTION
    Taha, Bilal
    Dias, Jorge
    Werghi, Naoufel
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2060 - 2064