On normalized convolution to measure curvature features for automatic polyp detection

被引:0
|
作者
van Wijk, C
Truyen, R
van Gelder, RE
van Vliet, LJ
Vos, FM
机构
[1] Delft Univ Technol, Quantitav Imaging Grp, NL-2628 CJ Delft, Netherlands
[2] Philips Med Syst Nederland BV, MIMIT, AD Grp, NL-5680 DA Best, Netherlands
[3] Acad Med Ctr, Dept Radiol, NL-1100 DE Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Early removal of polyps has proven to decrease the incidence of colon cancer. We aim to increase the sensitivity of the screening by automatic detection of polyps. It requires accurate measurement of the colon wall curvature. This paper describes a new method which computes the curvatures using space-variant derivative operators in a strip along the edge of the colon. It optimizes the trade-off between noise reduction and mixing of adjacent image structures. The derivative operators incorporate an applicability function for regularization and interpret the strips as confidence measure; certain inside and uncertain outside. To that purpose the technique of normalized convolution is utilized and adapted to allow a local Taylor expansion of the image signal. A special scheme to compute the confidence values is also presented.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 50 条
  • [1] On normalized convolution to measure curvature features for automatic polyp detection
    Van Wijk, C.
    Truyen, R.
    Van Gelder, R.E.
    Van Vliet, L.J.
    Vos, F.M.
    Lecture Notes in Computer Science, 2004, 3216 (PART 1): : 200 - 208
  • [2] Surface curvature estimation for automatic colonic polyp detection
    Huang, A
    Summers, RM
    Hara, AK
    MEDICAL IMAGING 2005: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES, PTS 1 AND 2, 2005, 5746 : 393 - 402
  • [3] Automatic Detection of Polyp Using Hessian Filter and HOG Features
    Iwahori, Yuji
    Hattori, Akira
    Adachi, Yoshinori
    Bhuyan, M. K.
    Woodham, Robert J.
    Kasugai, Kunio
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS 19TH ANNUAL CONFERENCE, KES-2015, 2015, 60 : 730 - 739
  • [4] Towards automatic polyp detection with a polyp appearance model
    Bernal, J.
    Sanchez, J.
    Vilarino, F.
    PATTERN RECOGNITION, 2012, 45 (09) : 3166 - 3182
  • [5] Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution Network
    Tomar, Nikhil Kumar
    Srivastava, Abhishek
    Bagci, Ulas
    Jha, Debesh
    2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2022, : 317 - 322
  • [6] Lines of curvature for polyp detection in virtual colonoscopy
    Zhao, Lingxiao
    Botha, Charl P.
    Bescos, Javier O.
    Truyen, Roel
    Vos, Frans M.
    Post, Frits H.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (05) : 885 - 892
  • [7] Symmetric curvature patterns for colonic polyp detection
    Jerebko, Anna
    Lakare, Sarang
    Cathier, Pascal
    Periaswamy, Senthil
    Bogoni, Luca
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 2, 2006, 4191 : 169 - 176
  • [8] AUTOMATIC POLYP DETECTION IN COLONOSCOPY VIDEOS
    Yuan, Zijie
    IzadyYazdanabadi, Mohammadhassan
    Mokkapati, Divya
    Panvalkar, Rujuta
    Shin, Jae Y.
    Tajbakhsh, Nima
    Gurudu, Suryakanth
    Liang, Jianming
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [9] Automatic Polyp Detection: A Comparative Study
    El Khatib, Alaa
    Werghi, Naoufel
    Al-Ahmad, Hussain
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 2669 - 2672
  • [10] Automatic Detection System improves Polyp Detection in Colonoscopy
    Di Lellis, Maddalena Angela
    ZEITSCHRIFT FUR GASTROENTEROLOGIE, 2020, 58 (01): : 18 - 18