Sedimentation and carbon burial on the northern California continental shelf: the signatures of land-use change

被引:35
|
作者
Leithold, EL [1 ]
Perkey, DW [1 ]
Blair, NE [1 ]
Creamer, TN [1 ]
机构
[1] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Eel River; shelf sedimentation; organic carbon; carbon isotopes; land use;
D O I
10.1016/j.csr.2004.09.015
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The burial of organic carbon (OC) on continental margins is strongly coupled to the supply and accumulation of inorganic mineral particles. It follows that carbon burial on the margins should be impacted by changes in riverine sediment delivery, yet these impacts have not been well documented. In this study, an similar to2000-year record of sedimentation and carbon burial on the continental shelf offshore from the Eel River in northern California was examined. The record reveals a 6-11-fold increase in the rate of sediment accumulation on the mid-shelf beginning about 1955, and a concomitant decrease in grain size and increase in flood-layer preservation. At the same time. the age of buried wood fragments abruptly decreased and their stable carbon isotopic composition became enriched in C-13. We argue that these changes can be explained largely as the result of altered land use in the Eel watershed during the past century and its impacts on shelf sediment dispersal processes. Sedimentary OC on the Eel shelf consists primarily of discrete wood fragments associated with coarse-silt- and sandsized particles, and of organic matter strongly bound to clay-sized mineral grains. The clay fraction is a particularly sensitive recorder of environmental change in the Eel system. Above the 1995 horizon, the clay fraction shows an abrupt decrease in OC concentration and loading (OC content normalized to particle surface area) attendant with the increased accumulation rate. Kerogen carbon constitutes a relatively constant proportion of the clay-associated OC throughout the similar to2000-year record. Increases in mass wasting and input of bedrock material following the onset of intensive industrial logging in the Eel watershed may have resulted in a lower loading of terrestrial plant OC in the clay fraction deposited after 1955 as suggested by isotopic mass balance calculations. The Eel River is representative of small mountainous watersheds worldwide that deliver a major portion of the sediment and carbon flux to the margins and that have been strongly impacted by land-use change during the past century. Our results suggest that such changes leave a distinctive mark in both the sedimentological and geochemical records preserved offshore. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:349 / 371
页数:23
相关论文
共 50 条
  • [31] Sources and sinks of carbon from land-use change in China
    Houghton, RA
    Hackler, JL
    GLOBAL BIOGEOCHEMICAL CYCLES, 2003, 17 (02)
  • [32] The spatiotemporal response of land-use carbon emissions to climate change
    Yang, Shenjie
    Wen, Lanjiao
    Zhang, Anlu
    ECOLOGICAL INDICATORS, 2025, 170
  • [33] Effects of Land-Use Change on Soil Organic Carbon and Nitrogen
    Jafarian, Zeinab
    Kavian, Ataollah
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2013, 44 (1-4) : 339 - 346
  • [34] Effects of land-use change on the carbon balance of terrestrial ecosystems
    Houghton, RA
    Goodale, CL
    ECOSYSTEMS AND LAND USE CHANGE, 2004, 153 : 85 - 98
  • [35] Attributing land-use change carbon emissions to exported biomass
    Saikku, Laura
    Soimakallio, Sampo
    Pingoud, Kim
    ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2012, 37 : 47 - 54
  • [37] Carbon sequestration with land-use cover change in a Himalayan watershed
    Sharma, P.
    Rai, S. C.
    GEODERMA, 2007, 139 (3-4) : 371 - 378
  • [38] Predicting land-use change
    Veldkamp, A
    Lambin, EF
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2001, 85 (1-3) : 1 - 6
  • [39] LAND-USE CHANGE AND CLIMATE
    HENDERSON-SELLERS, A
    LAND DEGRADATION AND REHABILITATION, 1994, 5 (02): : 107 - 126
  • [40] Managing land-use change
    Booth, Philip
    LAND USE POLICY, 2009, 26 : S154 - S159