EVALUATION OF SOIL MOISTURE RETRIEVALS FROM ALOS-2, SENTINEL-1 DATA IN GENHE, CHINA

被引:0
|
作者
Cui, Huizhen [1 ,2 ]
Jiang, Lingmei [1 ,2 ]
Paloscia, Simonetta [3 ]
Santi, Emanuele [3 ]
Pettinato, Simone [3 ]
Wang, Jian [1 ,2 ]
Wang, Gongxue [1 ,2 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Aerosp Informat Res Inst, Chinese Acad Sci, Fac Geog Sci,State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[3] CNR, Inst Appl Phys, Florence, Italy
基金
中国国家自然科学基金;
关键词
soil moisture; ALOS-2; Sentinel-1; ANN; IMAGES;
D O I
10.1109/IGARSS39084.2020.9323735
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-resolution soil moisture dataset is crucial for various application such as meteorology, climatology, hydrology and agriculture. Active microwave remote sensing sensors like radar provide earth observations at high spatial resolutions. This study based on physical model simulations (Advanced Integral Equation Method, AIEM, and Water Cloud Model, WCM) combined with the Artificial Neural Networks to investigate the potential of the ALOS-2 and Sentinel-1 radar images for estimating soil moisture at high spatial resolution. The results shows that the statistical parameters of the relationships between estimated and measured soil moisture, expressed in terms of R, bias, and RMSE, are 0.834 similar to 0.878, 1.59 similar to 3.65 vol% and 3.36 similar to 6.15 vol% for ALOS-2, and 0.722 similar to 0.896, 1.75 similar to 2.97 vol% and 3.24 similar to 6.86 vol%, for Sentinel-1. In densely vegetated area, RMSE significant increases, due to the limited penetration ability of L and C bands in high vegetation areas.
引用
收藏
页码:4450 / 4453
页数:4
相关论文
共 50 条
  • [11] Source Parameters of the 2016-2017 Central Italy Earthquake Sequence from the Sentinel-1, ALOS-2 and GPS Data
    Xu, Guangyu
    Xu, Caijun
    Wen, Yangmao
    Jiang, Guoyan
    REMOTE SENSING, 2017, 9 (11):
  • [12] ALOS-2 and Sentinel-1 use for retrieving soil moisture over cereal fields in semi-arid area: The Kairouan plain - central Tunisia
    Ayari, Emna
    Kassouk, Zeineb
    Lili-Chabaane, Zohra
    Baghdadi, Nicolas
    Bousbih, Safa
    Zribi, Mehrez
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XXIII, 2021, 11856
  • [13] USING SENTINEL-1 DATA FOR MONITORING OF SOIL MOISTURE
    Garkusha, Igor N.
    Hnatushenko, Volodymyr V.
    Vasyliev, Volodymyr V.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1656 - 1659
  • [14] Ionospheric Phase Screen Compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR Modes
    Gomba, Giorgio
    Gonzalez, Fernando Rodriguez
    De Zan, Francesco
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (01): : 223 - 235
  • [15] Mapping the Recent Vertical Crustal Deformation of the Weihe Basin (China) Using Sentinel-1 and ALOS-2 ScanSAR Imagery
    Qu, Feifei
    Zhang, Qin
    Niu, Yufen
    Lu, Zhong
    Wang, Shuai
    Zhao, Chaoying
    Zhu, Wu
    Qu, Wei
    Yang, Chengsheng
    REMOTE SENSING, 2022, 14 (13)
  • [16] 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡
    张腾
    谢帅
    黄波
    范景辉
    陈建平
    童立强
    国土资源遥感, 2021, 33 (02) : 213 - 219
  • [17] COMBINING POLARIMETRIC SENTINEL-1 AND ALOS-2/PALSAR-2 IMAGERY FOR MAPPING OF FLOODED VEGETATION
    Plank, Simon
    Juessi, Martin
    Martinis, Sandro
    Twele, Andre
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5705 - 5708
  • [18] Mapping of flooded vegetation by means of polarimetric Sentinel-1 and ALOS-2/PALSAR-2 imagery
    Plank, Simon
    Juessi, Martin
    Martinis, Sandro
    Twele, Andre
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (13) : 3831 - 3850
  • [19] Global Evaluation of SMAP/Sentinel-1 Soil Moisture Products
    Mohseni, Farzane
    Mirmazloumi, S. Mohammad
    Mokhtarzade, Mehdi
    Jamali, Sadegh
    Homayouni, Saeid
    REMOTE SENSING, 2022, 14 (18)
  • [20] An Oasis Soil Moisture Inversion Model Using ALOS-2 and Landsat 8 Data
    Wang, Yu
    Yang, Liping
    Ren, Jie
    Zhang, Jing
    Kong, Jinling
    Hou, Chenglei
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (09): : 1630 - 1638