MrERF, MrbZIP, and MrSURNod of Medicago ruthenica Are Involved in Plant Growth and Abiotic Stress Response

被引:1
|
作者
Wu, Rina [1 ]
Xu, Bo [1 ]
Shi, Fengling [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Grassland Resources & Environm, Key Lab Grassland Resources, Minist Educ, Hohhot, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Medicago ruthenica; abiotic stress; plant growth; transgenic tobacco; morphology; physiology; BZIP TRANSCRIPTION FACTOR; DROUGHT TOLERANCE; SALT; OVEREXPRESSION; GENE; EXPRESSION; POTATO; ABA;
D O I
10.3389/fpls.2022.907674
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abiotic stresses affect plant growth and productivity. The outstanding stress resistance of Medicago ruthenica makes it a desirable gene resource to improve the stress tolerance of other plants. The roles of three differently expressed genes [(DEGs) (MrERF, MrbZIP, and MrSURNod)] from M. ruthenica in stress resistance have not been fully elucidated. Therefore, we constructed their expression vectors, transformed them into tobacco, and subjected transgenic lines to abiotic stresses. Through comprehensive bioinformatics, transcriptomic, morphological, and physiological analyses of transgenic lines, we have revealed the critical role of these three DEGs in plant growth and abiotic stress response. The upregulation of genes enhanced the germination rate, biomass, root length number, etc. Additionally, the accumulation of osmolytes increased the activity of antioxidant enzymes. These genes are also associated with improved seed yield, increased branching, and early flowering, thereby shortening the growth period. Potentially, this is one of the ways for tobacco to cope with stress. Furthermore, the resistance of transgenic tobacco expressing MrERF or MrbZIP was better than that with MrSURNod. MrERF and MrbZIP can improve drought and salt tolerance of plants, whereas MrSURNod is beneficial in improving drought and cold resistance. Moreover, MrERF or MrbZIP can promote root elongation and increase the root number, whereas MrSURNod mainly promotes root elongation. This may be the reason why stress resistance conferred by MrSURNod is weaker than that associated with the other two genes. Overall, MrERF, MrbZIP, and MrSURNod positively modulate plant growth and stress tolerance.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Involvement of polyamines in plant response to abiotic stress
    Alcazar, Ruben
    Marco, Francisco
    Cuevas, Juan C.
    Patron, Macarena
    Ferrando, Alejandro
    Carrasco, Pedro
    Tiburcio, Antonio F.
    Altabella, Teresa
    BIOTECHNOLOGY LETTERS, 2006, 28 (23) : 1867 - 1876
  • [22] A review on plant endophytes in response to abiotic stress
    Cui, Jiamin
    Nie, Fanxuan
    Zhao, Yuquan
    Zhang, Dawei
    Zhou, Dinggang
    Wu, Jinfeng
    Qu, Liang
    Xiao, Lu
    Liu, Lili
    ENVIRONMENTAL POLLUTANTS AND BIOAVAILABILITY, 2024, 36 (01)
  • [23] The role of 14-3-3 proteins in plant growth and response to abiotic stress
    Ye Huang
    Wenshu Wang
    Hua Yu
    Junhua Peng
    Zhengrong Hu
    Liang Chen
    Plant Cell Reports, 2022, 41 : 833 - 852
  • [24] The role of 14-3-3 proteins in plant growth and response to abiotic stress
    Huang, Ye
    Wang, Wenshu
    Yu, Hua
    Peng, Junhua
    Hu, Zhengrong
    Chen, Liang
    PLANT CELL REPORTS, 2022, 41 (04) : 833 - 852
  • [25] Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress
    Napieraj, Natalia
    Janicka, Malgorzata
    Reda, Malgorzata
    PLANTS-BASEL, 2023, 12 (05):
  • [26] Plant Cell Organelle Proteomics in Response to Abiotic Stress
    Hossain, Zahed
    Nouri, Mohammad-Zaman
    Komatsu, Setsuko
    JOURNAL OF PROTEOME RESEARCH, 2012, 11 (01) : 37 - 48
  • [27] ROLE OF NITRIC OXIDE IN PLANT RESPONSE TO ABIOTIC STRESS
    Grzegorzewska, Weronika
    Jaworski, Krzysztof
    Szmidt-Jaworska, Adriana
    POSTEPY BIOLOGII KOMORKI, 2009, 36 (04) : 663 - 678
  • [28] Hydrogen sulphide signalling in plant response to abiotic stress
    Zhao, R.
    Yin, K.
    Chen, S.
    PLANT BIOLOGY, 2022, 24 (04) : 523 - 531
  • [29] Plant abiotic stress response and nutrient use efficiency
    Zhizhong Gong
    Liming Xiong
    Huazhong Shi
    Shuhua Yang
    Luis R.Herrera-Estrella
    Guohua Xu
    Dai-Yin Chao
    Jingrui Li
    Peng-Yun Wang
    Feng Qin
    Jigang Li
    Yanglin Ding
    Yiting Shi
    Yu Wang
    Yongqing Yang
    Yan Guo
    Jian-Kang Zhu
    Science China(Life Sciences) , 2020, (05) : 635 - 674
  • [30] Plant abiotic stress response and nutrient use efficiency
    Zhizhong Gong
    Liming Xiong
    Huazhong Shi
    Shuhua Yang
    Luis R. Herrera-Estrella
    Guohua Xu
    Dai-Yin Chao
    Jingrui Li
    Peng-Yun Wang
    Feng Qin
    Jijang Li
    Yanglin Ding
    Yiting Shi
    Yu Wang
    Yongqing Yang
    Yan Guo
    Jian-Kang Zhu
    Science China Life Sciences, 2020, 63 : 635 - 674