Phase diagram of superconductivity in the integer quantum Hall regime

被引:0
|
作者
Schirmer, Jonathan [1 ]
Liu, C. -X. [1 ,2 ]
Jain, J. K. [1 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
关键词
quantum Hall effect; topological superconductivity; Majorana modes; skyrmions; STATISTICS; SYMMETRIES; FERMIONS; ANYONS;
D O I
10.1073/pnas.2202948119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An interplay between pairing and topological orders has been predicted to give rise to superconducting states supporting exotic emergent particles, such asMajorana particles obeying non-Abelian braid statistics. We consider a system of spin polarized electrons on a Hofstadter lattice with nearest-neighbor attractive interaction and solve the mean-field Bogoliubov-de Gennes equations in a self-consistent fashion, leading to gauge-invariant observables and a rich phase diagram as a function of the chemical potential, the magnetic field, and the interaction. As the strength of the attractive interaction is increased, the system first makes a transition from a quantum Hall phase to a skyrmion lattice phase that is fully gapped in the bulk but has topological chiral edge current, characterizing a topologically nontrivial state. This is followed by a vortex phase in which the vortices carrying Majoranamodes form a lattice; the spectrum contains a low-energy Majorana band arising from the coupling between neighboring vortex-core Majorana modes but does not have chiral edge currents. For some parameters, a dimer vortex lattice occurs with no Majorana band. The experimental feasibility and the observable consequences of skyrmions as well as Majorana modes are indicated.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Signature of anyonic statistics in the integer quantum Hall regime
    Glidic, P.
    Petkovic, I.
    Piquard, C.
    Aassime, A.
    Cavanna, A.
    Jin, Y.
    Gennser, U.
    Mora, C.
    Kovrizhin, D.
    Anthore, A.
    Pierre, F.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [22] Electron interactions in an antidot in the integer quantum Hall regime
    Sim, H.-S.
    Kataoka, M.
    Ford, C. J. B.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 456 (04): : 127 - 165
  • [23] Dynamics of electronic transport in the integer quantum Hall regime
    Hohls, Frank
    Sukhodub, Gennadiy
    Haug, Rolf J.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (02): : 309 - 320
  • [24] Quantum detection of electronic flying qubits in the integer quantum Hall regime
    Feve, G.
    Degiovanni, P.
    Jolicoeur, Th.
    [J]. PHYSICAL REVIEW B, 2008, 77 (03):
  • [25] Electron tunneling spectroscopy of a quantum antidot in the integer quantum Hall regime
    Goldman, V. J.
    Liu, Jun
    Zaslavsky, A.
    [J]. PHYSICAL REVIEW B, 2008, 77 (11):
  • [26] Spectral functions of quantum dots in the integer and fractional quantum Hall regime
    Wojs, A
    Hawrylak, P
    [J]. PHYSICAL REVIEW B, 1997, 56 (20): : 13227 - 13234
  • [27] Robust electron pairing in the integer quantum hall effect regime
    H.K. Choi
    I. Sivan
    A. Rosenblatt
    M. Heiblum
    V. Umansky
    D. Mahalu
    [J]. Nature Communications, 6
  • [28] Optimization of edge state velocity in the integer quantum Hall regime
    Sahasrabudhe, H.
    Novakovic, B.
    Nakamura, J.
    Fallahi, S.
    Povolotskyi, M.
    Klimeck, G.
    Rahman, R.
    Manfra, M. J.
    [J]. PHYSICAL REVIEW B, 2018, 97 (08)
  • [29] Current distribution and conductance quantization in the integer quantum Hall regime
    Cresti, A
    Farchioni, R
    Grosso, G
    Parravicini, GP
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (24) : L377 - L383
  • [30] Noise Dephasing in Edge States of the Integer Quantum Hall Regime
    Roulleau, P.
    Portier, F.
    Roche, P.
    Cavanna, A.
    Faini, G.
    Gennser, U.
    Mailly, D.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (18)