A computational fluids dynamics study of buoyancy effects in reverse osmosis

被引:86
|
作者
Fletcher, DF
Wiley, DE [1 ]
机构
[1] Univ New S Wales, Sch Chem Engn & Ind Chem, UNESCO, Ctr Membrane Sci & Technol, Sydney, NSW 2052, Australia
[2] Univ Sydney, Dept Chem Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
CFD modelling; buoyancy effect; pressure-driven membrane; osmotic pressure;
D O I
10.1016/j.memsci.2004.07.023
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In order to advance the understanding of membrane transfer processes and their optimisation, models are required that can address all of the important physical processes occurring in membrane systems. This paper describes an extension of our previously validated computational fluid dynamics (CFD) model of a pressure-driven system to include a mechanistic model for permeate flux and buoyancy effects. As an example application, the effect of buoyancy in reverse osmosis of salt-water separation in a flat sheet system is examined. We show that for the salt-water system, buoyancy effects are important only for low flow rates that allow a significant increase in the salt concentration at the membrane surface and when the flow direction is aligned with the direction of gravity (i.e. in a vertical channel). No buoyancy effects are predicted for this system when the flow is oriented normal to the direction of gravity (i.e. for a horizontal channel). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 181
页数:7
相关论文
共 50 条
  • [31] Optimization of ladder-type spacers for nanofiltration and reverse osmosis spiral-wound modules by computational fluid dynamics
    Geraldes, V
    Semiao, V
    de Pinho, N
    [J]. EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING - 14, 2004, 18 : 187 - 192
  • [32] ENVR 113-Molecular dynamics simulation of reverse osmosis
    Suk, Myung E.
    Raghunathan, Anjan V.
    Aluru, Narayana R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [33] Multimodal confined water dynamics in reverse osmosis polyamide membranes
    Fabrizia Foglia
    Bernhard Frick
    Manuela Nania
    Andrew G. Livingston
    João T. Cabral
    [J]. Nature Communications, 13
  • [34] Multimodal confined water dynamics in reverse osmosis polyamide membranes
    Foglia, Fabrizia
    Frick, Bernhard
    Nania, Manuela
    Livingston, Andrew G.
    Cabral, Joao T.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [35] Seawater desalination by reverse osmosis (case study)
    Abou Rayan, M
    Khaled, I
    [J]. DESALINATION, 2003, 153 (1-3) : 245 - 251
  • [36] SEAWATER REVERSE-OSMOSIS - A STUDY IN USE
    AHMED, AM
    MOCH, I
    [J]. DESALINATION, 1991, 82 (1-3) : 3 - 13
  • [37] Reverse osmosis (RO) element preservation study
    Varnava, W
    Silbernagel, M
    Kuepper, T
    Miller, M
    [J]. WATER SUPPLY PUZZLE: HOW DOES DESALTING FIT IN?, 1996, : 308 - 327
  • [38] Molecular Dynamics Study of Carbon Nanotubes/Polyamide Reverse Osmosis Membranes: Polymerization, Structure, and Hydration
    Araki, Takumi
    Cruz-Silva, Rodolfo
    Tejima, Syogo
    Takeuchi, Kenji
    Hayashi, Takuya
    Inukai, Shigeki
    Noguchi, Toru
    Tanioka, Akihiko
    Kawaguchi, Takeyuki
    Terrones, Mauricio
    Endo, Morinobu
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (44) : 24566 - 24575
  • [39] Water Flow inside Polamide Reverse Osmosis Membranes: A Non Equilibrium Molecular Dynamics Study
    Song, Yang
    Xu, Fang
    Wei, Mingjie
    Wang, Yong
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (07): : 1715 - 1722
  • [40] SIGNIFICANCE OF EFFECTS IN A REVERSE-OSMOSIS DESALINATION UNIT
    SERAGELDIN, SG
    MEKHEMAR, SS
    [J]. DESALINATION, 1984, 51 (03) : 231 - 254