Toward the Z3*-theorem

被引:1
|
作者
Toborg, Imke [1 ]
Waldecker, Rebecca [1 ]
机构
[1] MLU Halle Wittenberg, Inst Math, D-06099 Halle, Germany
关键词
Finite groups; isolated elements; local analysis; 3-structure; simple groups;
D O I
10.1080/00927872.2021.1883638
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove a version of Glauberman's Z(3)*-Theorem for the prime 3 for finite groups G where certain local subgroups are soluble.
引用
收藏
页码:2851 / 2889
页数:39
相关论文
共 50 条
  • [21] ON THE STEINHAUS TILING PROBLEM FOR Z3
    Goldstein, Daniel
    Mauldin, R. Daniel
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (02): : 339 - 347
  • [22] BMW Z3: Nice, but not perfect
    Anon
    Design News (Boston), 2002, 56 (24):
  • [23] PUNCTURED INTERVALS TILE Z3
    Cambie, Stijn
    MATHEMATIKA, 2021, 67 (02) : 489 - 497
  • [24] Z3: An efficient SMT solver
    de Moura, Leonardo
    Bjorner, Nikolaj
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, 2008, 4963 : 337 - 340
  • [25] A characterization of regular tetrahedra in Z3
    Ionascu, Eugen J.
    JOURNAL OF NUMBER THEORY, 2009, 129 (05) : 1066 - 1074
  • [26] Schur rings over Z x Z3
    Chen, Gang
    He, Jiawei
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4434 - 4446
  • [27] WHAT IS THE ANSWER TO Z3=1
    ECKMANN, JP
    RECHERCHE, 1983, 14 (141): : 260 - 262
  • [28] The Structure of Simple Sets in Z3
    S. I. Veselov
    A. Yu. Chirkov
    Automation and Remote Control, 2004, 65 : 396 - 400
  • [29] SU(3)L x (Z3 x Z3) GAUGE SYMMETRY AND TRI- BIMAXIMAL MIXING
    Hattori, Chuichiro
    Matsunaga, Mamoru
    Matsuoka, Takeo
    Nakanishi, Kenichi
    MODERN PHYSICS LETTERS A, 2010, 25 (35) : 2981 - 2989
  • [30] ENTANGLEMENT COMPLEXITY OF GRAPHS IN Z3
    SOTEROS, CE
    SUMNERS, DW
    WHITTINGTON, SG
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 75 - 91