MHD equations;
vanishing Alfven number limit;
small Mach number;
uniform estimates;
34D15;
35A01;
SINGULAR LIMITS;
HYPERBOLIC SYSTEMS;
EULER EQUATIONS;
D O I:
10.1007/s11425-019-1593-0
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
for any fixed Alfven number, the local well-posedness is proved for the equations of three-dimensional ideal incompressible magneto-hydrodynamics in a domain with boundaries. Under appropriate conditions, a smooth solution is shown to exist in a time interval independent of the Alfven number, and the solutions of the original system tend to the solutions of a two-dimensional Euler flow coupled with a linear transport equation as the Alfven number goes to zero.
机构:
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaInst Appl Phys & Computat Math, Beijing 100088, Peoples R China
Ju, Qiangchang
Wang, Jiawei
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R ChinaInst Appl Phys & Computat Math, Beijing 100088, Peoples R China
Wang, Jiawei
Xu, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R ChinaInst Appl Phys & Computat Math, Beijing 100088, Peoples R China
机构:
NYU Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
NYU Shanghai, NY ECNU Inst Math Sci, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R ChinaNYU Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
Liu, Yuning
Wang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R ChinaNYU Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China