Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains

被引:4
|
作者
Zeng, Xianzhong [1 ]
机构
[1] Hunan Univ Sci & Technol, Dept Math & Comp Sci, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
the evolution P-laplacian equations; exterior domain; inhomogencous boundary conditions; critical exponent; blow-up; global existence;
D O I
10.1016/j.na.2006.06.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q(c) = n(p - 1)1(n - p) is its critical exponent provided 2n/(n + 1) < p < n. Furthermore, we prove that if max{1, p - } < q <= q(c), then every positive solution of the equations blows up in finite time; whereas for q > q(c), the equations admit the global positive solutions for some boundary value f (x) and some initial data u(o)(x). We also demonstrate that every positive solution of the equations blows up in finite time provided n <= p. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:901 / 916
页数:16
相关论文
共 50 条