Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains

被引:4
|
作者
Zeng, Xianzhong [1 ]
机构
[1] Hunan Univ Sci & Technol, Dept Math & Comp Sci, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
the evolution P-laplacian equations; exterior domain; inhomogencous boundary conditions; critical exponent; blow-up; global existence;
D O I
10.1016/j.na.2006.06.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q(c) = n(p - 1)1(n - p) is its critical exponent provided 2n/(n + 1) < p < n. Furthermore, we prove that if max{1, p - } < q <= q(c), then every positive solution of the equations blows up in finite time; whereas for q > q(c), the equations admit the global positive solutions for some boundary value f (x) and some initial data u(o)(x). We also demonstrate that every positive solution of the equations blows up in finite time provided n <= p. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:901 / 916
页数:16
相关论文
共 50 条
  • [1] EXISTENCE AND NONEXISTENCE OF GLOBAL POSITIVE SOLUTIONS FOR DEGENERATE PARABOLIC EQUATIONS IN EXTERIOR DOMAINS
    曾宪忠
    刘振海
    [J]. Acta Mathematica Scientia, 2010, 30 (03) : 713 - 725
  • [2] EXISTENCE AND NONEXISTENCE OF GLOBAL POSITIVE SOLUTIONS FOR DEGENERATE PARABOLIC EQUATIONS IN EXTERIOR DOMAINS
    Zeng Xianzhong
    Liu Zhenhai
    [J]. ACTA MATHEMATICA SCIENTIA, 2010, 30 (03) : 713 - 725
  • [3] Existence and nonexistence of global positive solutions for a weakly coupled P-Laplacian system
    Xian-zhong Zeng
    Zhen-hai Liu
    Yong-geng Gu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 541 - 554
  • [4] Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System
    Xian-zhong ZENG
    Zhen-hai LI
    Yong-geng GU
    [J]. Acta Mathematicae Applicatae Sinica, 2013, (03) : 541 - 554
  • [5] Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System
    Zeng, Xian-zhong
    Liu, Zhen-hai
    Gu, Yong-geng
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 541 - 554
  • [6] Existence and Nonexistence of Solutions to p-Laplacian Problems on Unbounded Domains
    Jeong, Jeongmi
    Kim, Chan-Gyun
    Lee, Eun Kyoung
    [J]. MATHEMATICS, 2019, 7 (05)
  • [7] SYMMETRY AND NONEXISTENCE OF POSITIVE SOLUTIONS TO FRACTIONAL P-LAPLACIAN EQUATIONS
    Wu, Leyun
    Niu, Pengcheng
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1573 - 1583
  • [8] EXISTENCE AND NONEXISTENCE OF POSITIVE EIGENFUNCTIONS FOR THE P-LAPLACIAN
    BINDING, PA
    HUANG, YX
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) : 1833 - 1838
  • [9] Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory
    Kirane, Mokhtar
    Fino, Ahmad Z.
    Kerbal, Sebti
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [10] Existence and Nonexistence of Positive Solutions for Singular p-Laplacian Equation in RN
    Chen, Caisheng
    Wang, Zhenqi
    Wang, Fengping
    [J]. BOUNDARY VALUE PROBLEMS, 2010,