The Decoupled Extended Kalman Filter for Dynamic Exponential-Family Factorization Models

被引:0
|
作者
Gomez-Uribe, Carlos A. [1 ]
Karrer, Brian [1 ]
机构
[1] Facebook, Menlo Pk, CA USA
关键词
approximate online inference; Kalman filter; matrix factorization; factorization machines; explore exploit; NATURAL GRADIENT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by the needs of online large-scale recommender systems, we specialize the decoupled extended Kalman filter (DEKF) to factorization models, including factorization machines, matrix and tensor factorization, and illustrate the effectiveness of the approach through numerical experiments on synthetic and on real-world data. Online learning of model parameters through the DEKF makes factorization models more broadly useful by (i) allowing for more flexible observations through the entire exponential family, (ii) modeling parameter drift, and (iii) producing parameter uncertainty estimates that can enable explore/exploit and other applications. We use a different parameter dynamics than the standard DEKF, allowing parameter drift while encouraging reasonable values. We also present an alternate derivation of the extended Kalman filter and DEKF that highlights the role of the Fisher information matrix in the EKF.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Adjusting for network size and composition effects in exponential-family random graph models
    Krivitsky, Pavel N.
    Handcock, Mark S.
    Morris, Martina
    STATISTICAL METHODOLOGY, 2011, 8 (04) : 319 - 339
  • [22] Improved Calibration Method for Dynamic Traffic Assignment Models Constrained Extended Kalman Filter
    Zhang, Haizheng
    Seshadri, Ravi
    Prakash, A. Arun
    Pereira, Francisco C.
    Antoniou, Constantinos
    Ben-Akiva, Moshe E.
    TRANSPORTATION RESEARCH RECORD, 2017, (2667) : 142 - 153
  • [23] Extended dynamic generalized linear models: The two-parameter exponential family
    Souza, M. A. O.
    Migon, H. S.
    Pereira, J. B. M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 121 : 164 - 179
  • [24] Model-based clustering of semiparametric temporal exponential-family random graph models
    Lee, Kevin H.
    Agarwal, Amal
    Zhang, Anna Y.
    Xue, Lingzhou
    STAT, 2022, 11 (01):
  • [25] Exponential-Family Models of Random Graphs: Inference in Finite, Super and Infinite Population Scenarios
    Schweinberger, Michael
    Krivitsky, Pavel N.
    Butts, Carter T.
    Stewart, Jonathan R.
    STATISTICAL SCIENCE, 2020, 35 (04) : 627 - 662
  • [26] A Novel Case of Practical Exponential Observer Using Extended Kalman Filter
    Ji, Daxiong
    Deng, Zhi
    Li, Shuo
    Ma, Dongfang
    Wang, Tao
    Song, Wei
    Zhu, Shiqiang
    Wang, Zhi
    Pan, Hongjun
    Sharma, Sanjay
    Yang, Xu
    IEEE ACCESS, 2018, 6 : 58004 - 58011
  • [27] The application of an extended Kalman filter in the Dynamic Positioning system
    Xia, Guoqing
    Li, Jiaojiao
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1945 - 1949
  • [28] Fitting EXPAR Models Through the Extended Kalman Filter
    Ghosh, Himadri
    Gurung, Bishal
    Gupta, Prajneshu
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2015, 77 : 27 - 44
  • [29] Use of the Extended Kalman Filter for Biological Models Accuracy
    Omekanda, Simon
    Omekanda, Jean-Lucien
    Abdel-Aty-Zohdy, Hoda
    Zohdy, Mohamed
    2013 IEEE 56TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2013, : 608 - 611
  • [30] An adaptive extended Kalman filter with application to compartment models
    Ozbek, L
    Efe, M
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2004, 33 (01) : 145 - 158