The Decoupled Extended Kalman Filter for Dynamic Exponential-Family Factorization Models

被引:0
|
作者
Gomez-Uribe, Carlos A. [1 ]
Karrer, Brian [1 ]
机构
[1] Facebook, Menlo Pk, CA USA
关键词
approximate online inference; Kalman filter; matrix factorization; factorization machines; explore exploit; NATURAL GRADIENT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by the needs of online large-scale recommender systems, we specialize the decoupled extended Kalman filter (DEKF) to factorization models, including factorization machines, matrix and tensor factorization, and illustrate the effectiveness of the approach through numerical experiments on synthetic and on real-world data. Online learning of model parameters through the DEKF makes factorization models more broadly useful by (i) allowing for more flexible observations through the entire exponential family, (ii) modeling parameter drift, and (iii) producing parameter uncertainty estimates that can enable explore/exploit and other applications. We use a different parameter dynamics than the standard DEKF, allowing parameter drift while encouraging reasonable values. We also present an alternate derivation of the extended Kalman filter and DEKF that highlights the role of the Fisher information matrix in the EKF.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] The decoupled extended kalman filter for dynamic exponential-family factorization models
    Gomez-Uribe, Carlos A.
    Karrer, Brian
    Journal of Machine Learning Research, 2021, 22
  • [2] On Exponential-Family INGARCH Models
    Huang, Alan
    Fung, Thomas
    Macaskill, Kyle
    Aukes, Rowan
    JOURNAL OF TIME SERIES ANALYSIS, 2025,
  • [3] Understanding networks with exponential-family random network models
    Wang, Zeyi
    Fellows, Ian E.
    Handcock, Mark S.
    SOCIAL NETWORKS, 2024, 78 : 81 - 91
  • [4] hergm: Hierarchical Exponential-Family Random Graph Models
    Schweinberger, Michael
    Luna, Pamela
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 85 (01): : 1 - 39
  • [5] Exponential-family random graph models for valued networks
    Krivitsky, Pavel N.
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1100 - 1128
  • [6] Extensions and enhancements of decoupled extended Kalman filter training
    Puskorius, GV
    Feldkamp, LA
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1879 - 1883
  • [7] Dynamic Exponential Family Matrix Factorization
    Hayashi, Kohei
    Hirayama, Jun-ichiro
    Ishii, Shin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 452 - +
  • [8] Exponential-Family Random Graph Models for Multi-Layer Networks
    Krivitsky, Pavel N.
    Koehly, Laura M.
    Marcum, Christopher Steven
    PSYCHOMETRIKA, 2020, 85 (03) : 630 - 659
  • [9] The extended Kalman filter as an exponential observer for nonlinear systems
    Reif, K
    Unbehauen, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (08) : 2324 - 2328
  • [10] Exponential-Family Random Graph Models for Multi-Layer Networks
    Pavel N. Krivitsky
    Laura M. Koehly
    Christopher Steven Marcum
    Psychometrika, 2020, 85 : 630 - 659