Abnormal Optoelectric Properties of Two-Dimensional Protonic Ruthenium Oxide with a Hexagonal Structure

被引:9
|
作者
Park, Hee Jung [1 ]
Lee, Kimoon [2 ]
Kim, Ill-Doo [3 ]
Choi, Seon-Jin [4 ]
Ryu, Byungki [5 ]
机构
[1] Daejeon Univ, Dept Adv Mat Engn, 62 Daehak Ro, Daejeon 34520, South Korea
[2] Kunsan Natl Univ, Dept Phys, 558 Daehak Ro, Gunsan 54150, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[4] MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] KERI, Creat & Fundamental Res Div, TCRC, 10-12 Bulmosan Ro, Chang Won 51543, South Korea
基金
新加坡国家研究基金会;
关键词
protonic ruthenium-oxide; sheet resistance; transmittance; transparent conducting electrode; DFT simulation; GRAPHENE SHEETS; NANOSHEETS; FILMS; PERFORMANCE; CONDUCTIVITY; REDUCTION; MOS2;
D O I
10.1021/acsami.8b07533
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional structures can potentially lead to not only modulation of electron transport but also the variations of optical property. Protonic ruthenium oxide, a two-dimensional atomic sheet material, has been synthesized, and its optoelectric properties have been investigated. The results indicate that protonic ruthenium oxide is an excellent candidate for use as a flexible, transparent conducting material. A hydrated-ruthenium-oxide sheet has been first prepared via the chemical exfoliation of sodium intercalated ruthenium oxide (NaRuO2) and, subsequently, converted into a protonic ruthenium oxide sheet using thermal treatment. A thermally activated transport mechanism is dominant in hydrated ruthenium oxide but diminishes in protonic ruthenium oxide; this resulted in a high electrical conductivity of similar to 200 S/cm of the protonic sheet. Because of the unique interband and intraband structure, protonic ruthenium oxide has a small optical absorption coefficient of , similar to 1.62%/L. Consequently, such high conductivity and low absorption coefficient of protonic ruthenium oxide results in excellent transparent conducting properties.
引用
收藏
页码:22661 / 22668
页数:8
相关论文
共 50 条
  • [21] CuAu, a hexagonal two-dimensional metal
    Zagler, Georg
    Reticcioli, Michele
    Mangler, Clemens
    Scheinecker, Daniel
    Franchini, Cesare
    Kotakoski, Jani
    2D MATERIALS, 2020, 7 (04)
  • [22] Photonic band structure in a two-dimensional hexagonal lattice of equilateral triangles
    Segovia-Chaves, Francis
    Vinck-Posada, Herbert
    Navarro-Baron, Erik
    PHYSICS LETTERS A, 2019, 383 (25) : 3207 - 3213
  • [23] Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice
    Ma, Runze
    Cao, Duanyun
    Zhu, Chongqin
    Tian, Ye
    Peng, Jinbo
    Guo, Jing
    Chen, Ji
    Li, Xin-Zheng
    Francisco, Joseph S.
    Zeng, Xiao Cheng
    Xu, Li-Mei
    Wang, En-Ge
    Jiang, Ying
    NATURE, 2020, 577 (7788) : 60 - +
  • [24] Two-dimensional Kagome structure, fundamental hexagonal photonic crystal configuration
    Nielsen, JB
    Sondergaard, T
    Barkou, SE
    Bjarklev, A
    Broeng, J
    Nielsen, MB
    ELECTRONICS LETTERS, 1999, 35 (20) : 1736 - 1737
  • [25] Holographic lithography of a two-dimensional hexagonal structure:: Effect of beam polarization
    Salauen, M.
    Audier, M.
    Duneau, M.
    Delyon, F.
    APPLIED SURFACE SCIENCE, 2007, 254 (04) : 850 - 854
  • [26] Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice
    Runze Ma
    Duanyun Cao
    Chongqin Zhu
    Ye Tian
    Jinbo Peng
    Jing Guo
    Ji Chen
    Xin-Zheng Li
    Joseph S. Francisco
    Xiao Cheng Zeng
    Li-Mei Xu
    En-Ge Wang
    Ying Jiang
    Nature, 2020, 577 : 60 - 63
  • [27] Electronic structure theory of strained two-dimensional materials with hexagonal symmetry
    Fang, Shiang
    Carr, Stephen
    Cazalilla, Miguel A.
    Kaxiras, Efthimios
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [28] Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets
    Zhang, Fang
    Liu, Guowei
    Wang, Zhengping
    Tang, Tianhong
    Wang, Xinle
    Wang, Chaowei
    Fu, Shenggui
    Xing, Fei
    Han, Kezhen
    Xu, Xinguang
    NANOSCALE, 2019, 11 (36) : 17058 - 17064
  • [29] Electronic band structure of a two-dimensional oxide quasicrystal
    Chiang, Cheng-Tien
    Ellguth, Martin
    Schumann, Florian O.
    Tusche, Christian
    Kraska, Richard
    Foerster, Stefan
    Widdra, Wolf
    PHYSICAL REVIEW B, 2019, 100 (12)
  • [30] Two-Dimensional Nanocrystals: Structure, Properties and Applications
    Young, Robert J.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2013, 38 (06) : 1289 - 1304