Patternable Mesoporous Thin Film Quantum Materials via Block Copolymer Self-Assembly: An Emergent Technology?

被引:4
|
作者
Yu, Fei [1 ,2 ]
Thedford, R. Paxton [1 ,3 ]
Hedderick, Konrad R. [1 ]
Freychet, Guillaume [4 ]
Zhernenkov, Mikhail [4 ]
Estroff, Lara A. [1 ,5 ]
Nowack, Katja C. [6 ]
Gruner, Sol M. [5 ,6 ]
Wiesner, Ulrich B. [1 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[3] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[4] Brookhaven Natl Lab, Natl Synchrotron Light Source Ii, Upton, NY 11973 USA
[5] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[6] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Block Copolymer; Superconductor; Thin Film; Niobium Carbonitride; Lithography; Quantum Metamaterials; DATA VISUALIZATION; RESISTIVITY; MORPHOLOGY; SCATTERING; STATES;
D O I
10.1021/acsami.1c09085
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent developments in quantum materials hold promise for revolutionizing energy and information technologies. The use of soft matter self-assembly, for example, by employing block copolymers (BCPs) as structure directing or templating agents, offers facile pathways toward quantum metamaterials with highly tunable mesostructures via scalable solution processing. Here, we report the preparation of patternable mesoporous niobium carbonitride-type thin film superconductors through spin-coating of a hybrid solution containing an amphiphilic BCP swollen by niobia sol precursors and subsequent thermal processing in combination with photolithography. Spin-coated as-made BCP-niobia hybrid thin films on silicon substrates after optional photolithographic definition are heated in air to produce a porous oxide, and subsequently converted in a multistep process to carbonitrides via treatment with high temperatures in reactive gases induding anunonia. Grazing incidence small-angle X-ray scattering suggests the presence of ordered mesostructures in as-made BCP-niobia films without further annealing, consistent with a distorted alternating gyroid morphology that is retained upon thermal treatments. Wide-angle X-ray scattering confirms the synthesis of phase-pure niobium carbonitride nanocrystals with rock-salt lattices within the mesoscale networks. Electrical transport measurements of unpatterned thin films show initial exponential rise in resistivity characteristic of thermal activation in granular systems down to 12.8 K, at which point resistivity drops to zero into a superconducting state. Magnetoresistance measurements determine the superconducting upper critical field to be over 16 T, demonstrating material quality on par with niobium carbonitrides obtained from traditional solid-state synthesis methods. We discuss how such cost-effective and scalable solution-based quantum materials fabrication approaches may be integrated into existing microelectronics processing, promising the emergence of a technology with tremendous academic and industrial potential by combining the capabilities of soft matter self-assembly with quantum materials.
引用
收藏
页码:34732 / 34741
页数:10
相关论文
共 50 条
  • [41] Ordered Mesoporous Microcapsules from Double Emulsion Confined Block Copolymer Self-Assembly
    Werner, Joerg G.
    Lee, Hyomin
    Wiesner, Ulrich
    Weitz, David A.
    ACS NANO, 2021, 15 (02) : 3490 - 3499
  • [42] Optical Nanoimaging for Block Copolymer Self-Assembly
    Yan, Jie
    Zhao, Ling-Xi
    Li, Chong
    Hu, Zhe
    Zhang, Guo-Feng
    Chen, Ze-Qiang
    Chen, Tao
    Huang, Zhen-Li
    Zhu, Jintao
    Zhu, Ming-Qiang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (07) : 2436 - 2439
  • [43] Nanostructured thin films via self-assembly of block copolymers
    Krausch, G
    Magerle, R
    ADVANCED MATERIALS, 2002, 14 (21) : 1579 - +
  • [44] Block copolymer self-assembly in ionic liquids
    Tamate, Ryota
    Hashimoto, Kei
    Ueki, Takeshi
    Watanabe, Masayoshi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (39) : 25123 - 25139
  • [45] Superlattice by charged block copolymer self-assembly
    Jimin Shim
    Frank S. Bates
    Timothy P. Lodge
    Nature Communications, 10
  • [46] Nanopatterning Biomolecules by Block Copolymer Self-Assembly
    Killops, Kato L.
    Gupta, Nalini
    Dimitriou, Michael D.
    Lynd, Nathaniel A.
    Jung, Hyunjung
    Tran, Helen
    Bang, Joona
    Campos, Luis M.
    ACS MACRO LETTERS, 2012, 1 (06) : 758 - 763
  • [47] SELF-ASSEMBLY IN AQUEOUS BLOCK COPOLYMER SOLUTIONS
    MALMSTEN, M
    LINDMAN, B
    MACROMOLECULES, 1992, 25 (20) : 5440 - 5445
  • [48] Block Copolymer Controlled Nanoparticle Self-assembly
    Ma, Shi-ying
    Wang, Rong
    ACTA POLYMERICA SINICA, 2016, (08): : 1030 - 1041
  • [49] Self-assembly scenarios of block copolymer stars
    Koch, Christian
    Likos, Christos N.
    Panagiotopoulos, Athanassios Z.
    Lo Verso, Federica
    MOLECULAR PHYSICS, 2011, 109 (23-24) : 3049 - 3060
  • [50] Self-assembly of nanostructured block copolymer nanoparticles
    Jin, Zhaoxia
    Fan, Hailong
    SOFT MATTER, 2014, 10 (46) : 9212 - 9219