SigNet: A Novel Deep Learning Framework for Radio Signal Classification

被引:51
|
作者
Chen, Zhuangzhi [1 ]
Cui, Hui [1 ]
Xiang, Jingyang [1 ]
Qiu, Kunfeng [1 ]
Huang, Liang [2 ]
Zheng, Shilian [3 ]
Chen, Shichuan [3 ]
Xuan, Qi [1 ,5 ,6 ]
Yang, Xiaoniu [4 ,7 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Inst Cyberspace Secur, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Peoples R China
[3] 011 Res Ctr, Sci & Technol Commun Informat Secur Control Lab, Jiaxing 314033, Peoples R China
[4] Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou 310023, Peoples R China
[5] Peng Cheng Lab, PCL Res Ctr Networks & Commun, Shenzhen 518000, Peoples R China
[6] Utron Technol Co Ltd, Hangzhou 310056, Peoples R China
[7] Sci & Technol Commun Informat Secur Control Lab, Jiaxing 314033, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; modulation recognition; convolutional neural network; MODULATION CLASSIFICATION; IDENTIFICATION; NETWORK; 5G;
D O I
10.1109/TCCN.2021.3120997
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Deep learning methods achieve great success in many areas due to their powerful feature extraction capabilities and end-to-end training mechanism, and recently they are also introduced for radio signal modulation classification. In this paper, we propose a novel deep learning framework called SigNet, where a signal-to-matrix (S2M) operator is adopted to convert the original signal into a square matrix first and is co-trained with a follow-up CNN architecture for classification. This model is further accelerated by integrating 1D convolution operators, leading to the upgraded model SigNet2.0. The simulations on two signal datasets show that both SigNet and SigNet2.0 outperform a number of well-known baselines. More interestingly, our proposed models behave extremely well in small-sample learning when only a small training dataset is provided. They can achieve a relatively high accuracy even when 1% training data are kept, while other baseline models may lose their effectiveness much more quickly as the datasets get smaller. Such result suggests that SigNet/SigNet2.0 could be extremely useful in the situations where labeled signal data are difficult to obtain. The visualization of the output features of our models demonstrates that our model can well divide different modulation types of signals in the feature hyper-space.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 50 条
  • [21] A Deep Learning Approach to Radio Signal Denoising
    Almazrouei, Ebtesam
    Gianini, Gabriele
    Almoosa, Nawaf
    Damiani, Ernesto
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOP (WCNCW), 2019,
  • [22] A Deep Learning Framework for Malware Classification
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil
    Wang, Yang
    Iqbal, Farkhund
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2020, 12 (01) : 90 - 108
  • [23] Deep learning-based framework for expansion, recognition and classification of underwater acoustic signal
    Jin, Guanghao
    Liu, Fan
    Wu, Hao
    Song, Qingzeng
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2020, 32 (02) : 205 - 218
  • [24] Radio sources segmentation and classification with deep learning
    Lao, B.
    Jaiswal, S.
    Zhao, Z.
    Lin, L.
    Wang, J.
    Sun, X.
    Qin, S. -L.
    ASTRONOMY AND COMPUTING, 2023, 44
  • [25] XcelNet14: A Novel Deep Learning Framework for Aerial Scene Classification
    Ahmed, Bilal
    Akram, Tallha
    Naqvi, Syed Rameez
    Alsuhaibani, Anas
    Attique Khan, Muhammad
    Kraiem, Naoufel
    IEEE ACCESS, 2024, 12 : 196266 - 196281
  • [26] A Novel Deep Learning and Polar Transformation Framework for an Adaptive Automatic Modulation Classification
    Ghasemzadeh, Pejman
    Banerjee, Subharthi
    Hempel, Michael
    Sharif, Hamid
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 13243 - 13258
  • [27] Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework
    Pankaj
    Kumar, Ashish
    Komaragiri, Rama
    Kumar, Manjeet
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2023, 46 (04) : 1589 - 1605
  • [28] Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework
    Ashish Pankaj
    Rama Kumar
    Manjeet Komaragiri
    Physical and Engineering Sciences in Medicine, 2023, 46 : 1589 - 1605
  • [29] A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
    Khan, SanaUllah
    Islam, Naveed
    Jan, Zahoor
    Din, Ikram Ud
    Rodrigues, Joel J. P. C.
    PATTERN RECOGNITION LETTERS, 2019, 125 : 1 - 6
  • [30] Radio signal recognition based on image deep learning
    Zhou X.
    He X.
    Zheng C.
    Tongxin Xuebao/Journal on Communications, 2019, 40 (07): : 114 - 125